Skip to main content
Log in

A Failure Criterion Considering Stress Angle Effect

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

\({\sigma _1}\) :

Major principal stress

\({\sigma _2}\) :

Intermediate principal stress

\({\sigma _3}\) :

Minor principal stress

\(F\) :

Failure criterion function

\(C\) :

Material constant

\({I_1}\) :

First invariant of the stress tensor

\({J_2}\) :

Second invariant of deviatoric stress tensor

\({J_3}\) :

Third invariant of deviatoric stress tensor

\(\xi\) :

Hydrostatic length

\(r\) :

Deviatoric length

\(\theta\) :

Stress angle

\({\sigma _{\text{t}}}\) :

Uniaxial tensile strength

\({\sigma _{\text{c}}}\) :

Uniaxial compressive strength

\({\sigma _{{\text{ax}}}}\) :

Axial stress in the conventional triaxial test

\({\sigma _{\text{p}}}\) :

Confining pressure in the conventional triaxial test

\(g(\theta )\) :

Stress angle function

\(\alpha\) :

Tensile-compressive strength ratio

References

  • Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  • Christensen RM (2007) A comprehensive theory of yielding and failure for isotropic materials. J Eng Mater Technol 129(2):173–181

    Article  Google Scholar 

  • Christensen RM (2013) The theory of materials failure. Oxford University Press, Oxford

    Book  Google Scholar 

  • Glowacki A (2017) Permeability hysteresis of Indiana Limestone subjected to isotropic compression. Dissertation, McGill University

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of westerly granite. Int J Rock Mech Min Sci 37(1):285–296

    Article  Google Scholar 

  • Humpheson C, Naylor DJ (1975) The importance of the form of the failure criterion. In: C/R/243/75. University of Wales, Swansea

    Google Scholar 

  • Makhnenko R, Labuz J (2014) Plane strain testing with passive restraint. Rock Mech Rock Eng 47(6):2021–2029

    Article  Google Scholar 

  • Meyer JP, Labuz JF (2013) Linear failure criteria with three principal stresses. Int J Rock Mech Min Sci 60(9):180–187

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76(5):1255–1269

    Article  Google Scholar 

  • Mogi K (2007) Experimental rock mechanics. Taylor & Francis, London

    Book  Google Scholar 

  • Neto EADS, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  • Nguyen SH, Chemenda AI, Ambre J (2011) Influence of the loading conditions on the mechanical response of granular materials as constrained from experimental tests on synthetic rock analogue material. Int J Rock Mech Min Sci 48(1):103–115

    Article  Google Scholar 

  • Ottosen NS, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Amsterdam

    Google Scholar 

  • Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown yield criterion. Rock Mech Rock Eng 38(4):299–327

    Article  Google Scholar 

  • Renani HR, Martin CD, Hoek E (2016) Application of the Christensen failure criterion to intact rock. Geotech Geol Eng 34(1):297–312

    Article  Google Scholar 

  • Sharpe J (2017) Failure of rock at low mean stress. Dissertation, University of Minnesota

  • Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48(4):546–555

    Article  Google Scholar 

  • Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 200 m. In: Maury V, Fourmaintraux D (eds) International symposium on rock at great depth, vol 1. Balkema, Rotterdam, pp 19–26

    Google Scholar 

  • Yu HS (2006) Plasticity and geotechnics. Springer, New York

    Google Scholar 

  • Yu MH (2018) Unified strength theory and its applications, 2nd edn. Springer Nature and Xi’an Jiaotong University Press, Singapore and Xi’an

    Book  Google Scholar 

  • Zeng F, Li Y, Labuz JF (2018) Paul–Mohr–Coulomb failure criterion for geomaterials. J Geotech Geoenviron Eng 144(2):06017018

    Article  Google Scholar 

  • Zhang L (2008) A generalized three-dimensional Hoek–Brown strength criterion. Rock Mech Rock Eng 41(6):893–915

    Article  Google Scholar 

  • Zienkiewicz OC, Pande GN (1977) Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Gudehus G (ed) Finite elements in geomechanics. Wiley, London, pp 179–190

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (11472206) and the 111 Project (B18040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Ming Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JY., Li, YM. A Failure Criterion Considering Stress Angle Effect. Rock Mech Rock Eng 52, 1257–1263 (2019). https://doi.org/10.1007/s00603-018-1676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1676-x

Keywords

Navigation