Skip to main content
Log in

A Three-Dimensional Failure Criterion for Hard Rocks Under True Triaxial Compression

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Hard rock usually refers to brittle rock with a uniaxial compressive strength over 60 MPa, such as most igneous and metamorphic rocks and well-indurated sedimentary rocks.

Abbreviations

σ1,σ2, and σ3 :

Maximum, intermediate, and minimum principal stresses, respectively

σ t :

Uniaxial tensile strength

σ c :

Uniaxial compressive strength

τoct and σoct :

Octahedral shear stress and octahedral normal stress

σ m,2 :

Mean effective normal stress

b :

Intermediate principal stress coefficient

θ σ :

Lode angle

g(θσ):

Deviatoric function

φ b :

Friction angle with different b values

φ 0 :

Friction angle at b = 0

c 0 :

Cohesion at b = 0

s :

Strength-difference coefficient between generalized triaxial extension and generalized triaxial compression

t :

Material constant controlling the maximum strength-increasing ratio affected by σ2

δ :

Relative error between the theoretical and testing results

References

  • Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci 42:431–439

    Article  Google Scholar 

  • Alejano LR, Bobet A (2012) Drucker–Prager criterion. Rock Mech Rock Eng 45:995–999

    Article  Google Scholar 

  • Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45:210–222

    Article  Google Scholar 

  • Chang C, Haimson B (2012) A failure criterion for rocks based on true triaxial testing. Rock Mech Rock Eng 45:1007–1010

    Article  Google Scholar 

  • Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39:695–729

    Article  Google Scholar 

  • Eberhardt E (2012) The Hoek–Brown failure criterion. Rock Mech Rock Eng 45:981–988

    Article  Google Scholar 

  • Feng XT, Zhang X, Kong R, Wang G (2016) A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mech Rock Eng 49:1649–1662

    Article  Google Scholar 

  • Feng XT, Kong R, Zhang X, Yang C (2019) Experimental study of failure differences in hard rock under true triaxial compression. Rock Mech Rock Eng 52:2109–2122

    Article  Google Scholar 

  • Gao H, Zheng Y, Feng XT (2007) Study on energy yield criterion of geomaterials. Chin J Rock Mech Eng 26(12):2437–2443

    Google Scholar 

  • Haimson B (2006) True triaxial stresses and the brittle fracture of rock. Pure Appl Geophys 163:1101–1130

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng 106(GT9):1013–1035

    Google Scholar 

  • Huang SL, Feng XT, Zhang C (2008) A new generalized polyaxial strain energy strength criterion of brittle rock and polyaxial test validation. Chin J Rock Mech Eng 27(1):124–134 (in Chinese)

    Google Scholar 

  • Ingraham MD, Issen KA, Holcomb DJ (2013) Response of Castlegate sandstone to true triaxial states of stress. J Geophys Res Solid Earth 118:536–552

    Article  Google Scholar 

  • Jiang H, Zhao J (2015) A simple three-dimensional failure criterion for rocks based on the Hoek-Brown criterion. Rock Mech Rock Eng 48:1807–1819

    Article  Google Scholar 

  • Jimenez R, Ma X (2013) A note on the strength symmetry imposed by Mogi’s true-triaxial criterion. Int J Rock Mech Min Sci 64:17–21

    Article  Google Scholar 

  • Kong R, Feng XT, Zhang X, Yang C (2018) Study on crack initiation and damage stress in sandstone under true triaxial compression. Int J Rock Mech Min Sci 106:117–123

    Article  Google Scholar 

  • Labuz JF, Zang A (2012) Mohr–Coulomb failure criterion. Rock Mech Rock Eng 45:975–979

    Article  Google Scholar 

  • Labuz JF, Zeng F, Makhnenko R, Li Y (2018) Brittle failure of rock: a review and general linear criterion. J Struct Geol 112:7–28

    Article  Google Scholar 

  • Lade PV (1977) Elasto-plastic stress–strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13:1019–1035

    Article  Google Scholar 

  • Ma X, Haimson BC (2016) Failure characteristics of two porous sandstones subjected to true triaxial stresses. J Geophys Res Solid Earth 121:6477–6498

    Article  Google Scholar 

  • Ma X, Rudnicki JW, Haimson BC (2017) The application of a Matsuoka–Nakai–Lade–Duncan failure criterion to two porous sandstones. Int J Rock Mech Min Sci 92:9–18

    Article  Google Scholar 

  • Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Jpn Soc Civil Eng 1974:59–70

    Article  Google Scholar 

  • Meyer JP, Labuz JF (2013) Linear failure criteria with three principal stresses. Int J Rock Mech Min Sci 60:180–187

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269

    Article  Google Scholar 

  • Pan XD, Hudson JA (1988) A simplified three dimensional Hoek–Brown yield criterion. In: Romana M (ed) Rock mechanics and power plants. Balkema, Rotterdam, pp 95–103

    Google Scholar 

  • Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech Rock Eng 38:299–327

    Article  Google Scholar 

  • Rudnicki JW (2017) A three invariant model of failure in true triaxial tests on Castlegate sandstone. Int J Rock Mech Min Sci 97:46–51

    Article  Google Scholar 

  • Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48:546–555

    Article  Google Scholar 

  • Sriapai T, Walsri C, Fuenkajorn K (2013) True-triaxial compressive strength of Maha Sarakham salt. Int J Rock Mech Min Sci 61:256–265

    Article  Google Scholar 

  • Stacey TR (1981) A simple extension strain criterion for fracture of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 18:469–474

    Article  Google Scholar 

  • Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D (eds) Rock at great depth. Balkema, Rotterdam, pp 19–26

    Google Scholar 

  • Wiebols GA, Cook NGW (1968) An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci Geomech Abstr 5:529–549

    Article  Google Scholar 

  • Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. In: Proc., Int. Assoc. Bridge Struct. Eng., Italy, pp 174–186

  • Wu S, Zhang S, Guo C, Xiong L (2017) A generalized nonlinear failure criterion for frictional materials. Acta Geotech 12:1353–1371

    Article  Google Scholar 

  • You M (2009) True-triaxial strength criteria for rock. Int J Rock Mech Min Sci 46:115–127

    Article  Google Scholar 

  • Yu M (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55:169

    Article  Google Scholar 

  • Zhang L, Zhu H (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron Eng 133:1128–1135

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51621006, No. 51839003). The authors thank Professor Resat Ulusay, Professor Ergun Tuncay, Mr. Gaolei Song, and Mr. Zhi Zheng for their help with the true triaxial testing of the rock samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Ting Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, XT., Kong, R., Yang, C. et al. A Three-Dimensional Failure Criterion for Hard Rocks Under True Triaxial Compression. Rock Mech Rock Eng 53, 103–111 (2020). https://doi.org/10.1007/s00603-019-01903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01903-8

Keywords

Navigation