Skip to main content
Log in

Batisite, Na2BaTi2(Si4O12)O2, from Inagli massif, Aldan, Russia: crystal-structure refinement and high-temperature X-ray diffraction study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystal structure of batisite, Na2BaTi2 (Si4O12)O2, from the Inagli massif (Aldan, Yakutia, Russia) was refined to R 1 = 0.032 for 1449 unique observed reflections. The mineral is orthorhombic, Imma, a = 8.0921(5), b = 10.4751(7), c = 13.9054(9) Å, V = 1178.70(13) Å3. The mineral is based upon three-dimensional titanosilicate framework consisting of chains of corner-sharing MO6 octahedra (M = Ti, Nb, Fe and Zr) and vierer chains of corner-sharing SiO4 tetrahedra. Both chains are parallel to the a axis and are linked by sharing peripheral O atoms. The octahedral chains display disorder of M atoms and bridging O sites related to the out-of-center distortion of octahedral geometry around Ti4+ cations. Electron microprobe analysis gives SiO2 39.46, TiO2 24.66, BaO 21.64, Na2O 7.56, K2O 4.38, Fe2O3 0.90, ZrO2 0.66, Nb2O5 0.36, (H2O)calc 0.58, sum 99.76 wt%. The seven strongest X-ray powder-diffraction lines [listed as d in Å (I) hkl] are: 8.39 (94) 011, 3.386 (56) 031, 3.191 (36) 123, 2.910 (46) 222, 2.896 (100) 024, 2.175 (45) 035, 1.673 (57) 055. The thermal behaviour of batisite in the temperature range from 25 to 950 °C was studied using high-temperature powder X-ray diffraction. The thermal expansion coefficients along the principal crystallographic axes are: α a  = 14.4 × 10−6, α b  = 8.7 × 10−6, α c  = 8.4 × 10−6, α V  = 31.5 °C−1 for the temperature range 25–500 °C and α a  = 19.6 × 10−6, α b  = 9.1 × 10−6, α c  = 8.8 × 10−6, α V  = 37.6 °C−1 for the temperature range 500–900 °C. The direction of maximal thermal expansion is parallel to the chains of both MO6 octahedra and SiO4 tetrahedra, which can be explained by the stretching of silicate chains due to the increasing thermal vibrations of the Ba2+ cations. At 1000 °C, the titanosilicate framework in batisite collapses with the formation of fresnoite, Ba2TiSi2O7O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen FM, Burnham CW (1992) A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth. Can Mineral 30:1–18

    Google Scholar 

  • Armbruster T, Gnos E (2000) P4/n and P4nc long-range ordering in low-temperature vesuvianites. Am Mineral 85:563–569

    Article  Google Scholar 

  • Belov NV (1961) Crystal chemistry of large cation silicates. Consultants Bureau, New York

  • Blasse C (1968) Fluorescence of compounds with fresnoite (Ba2TiSi2O8) structure. Inorg Nucl Chem 30:2283–2284

    Article  Google Scholar 

  • Bloembergen N, Pershan PS (1962) Light waves at the boundary of nonlinear media. Phys Rev 128:606–622

    Article  Google Scholar 

  • Bobovich YS (1963) Spectroscopic study of the coordination state of titanium in some glass-like substances. Optika i Spektroskopia 14:647–654

    Google Scholar 

  • Bobovich YS, Petrovskii GT (1963) The state of titanium in products of complete crystallization in several systems. Zhur Strukt Khim 4:765–768

    Google Scholar 

  • Brese NE, O'Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Bruker (2004) Optik GmbH, Rudolf-Plank-Straße 27, D-76275 Ettlingen, Germany

  • Bruker AXS (2009) Topas V4.2: General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany

  • Bruker-AXS (2014) APEX2. Version 2014.11–0. Madison, Wisconsin, USA

  • Chukanov NV (2014) Infrared spectra of mineral species. Springer Geochemistry/Mineralogy, London

    Book  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  • Es'kova EM, Kazakova ME (1954) Shcherbakovite - a new mineral. Dokl Akad Nauk SSSR 99:837–840

    Google Scholar 

  • Gopalakrishnan J, Ramesha K, Rangan KK, Pandey S (1999) In search of inorganic nonlinear optical materials for second harmonic generation. J Solid State Chem 148:75–80

    Article  Google Scholar 

  • Gorelova LA, Bubnova RS, Krivovichev SV, Krzhizhanovskaya MG, Filatov SK (2016) Thermal expansion and structural complexity of Ba silicates with tetrahedrally coordinated Si atoms. J Solid State Chem 235:76–84

    Article  Google Scholar 

  • Kravchenko SM, Vlasova EV, Pinevich NG (1960) Batisite — a new mineral. Dokl Akad Nauk SSSR 133:657–660

    Google Scholar 

  • Krivovichev SV, Yakovenchuk VN, Pakhomovsky YA (2004) Topology and symmetry of titanosilicate framework in the crystal structure of shcherbakovite, Na(K,Ba)2(Ti,Nb)2[Si4O12]. Zap Vses Miner Obshchest 133(3):55–63

    Google Scholar 

  • Kunz M, Brown ID (1994) Out-of-center distortions around octahedrally coordinated d0-transition metals. J Solid State Chem 115:395–406

    Article  Google Scholar 

  • Langreiter T, Kahlenberg V (2014) TEV – a program for the determination and visualization of the thermal expansion tensor from diffraction data. Institute of Mineralogy and Petrography, University of Innsbruck, Austria

  • Liebau F (1982) Classification of silicates. In: Ribbe PH (ed) Orthocilicates. Rev Mineral, Mineral Soc Am 5:1–24

    Google Scholar 

  • Liebau F (1985) Structural chemistry of silicates: Structure, bonding and classification. Springer-Verlag, Berlin

  • Lunkenheimer P, Krohns S, Gemander F, Schmahl WW, Loidl A (2014) Dielectric characterization of a nonlinear optical material. Sci Rep 4:1–5

    Google Scholar 

  • Moore PB, Louisnathan SJ (1969) The crystal structure of fresnoite, Ba2(TiO)Si2О7. Z Kristallogr 130:438–448

    Article  Google Scholar 

  • Nikitin AV, Belov NV (1962) Crystal structure of batisite, Na2BaTi2Si4O14 = Na2BaTi2O2[Si4O12]. Dokl Akad Nauk SSSR 146:1401–1403

    Google Scholar 

  • Piilonen PC, McDonald AM, LaLonde AE (2003) Insights into astrophyllite–group minerals. II. Crystal chemistry. Can Mineral 41:27–54

    Article  Google Scholar 

  • Rastsvetaeva RK, Pushcharovskii DY, Konev AA, Evsunin VG (1997) The crystal structure of K-containing batisite. Kristallografiya 42:837–840

    Google Scholar 

  • Robbins CR (1970) Synthesis and growth of fresnoite (Ba2TiSi2O8) from a TiO2 flux and its relation to the system BaTiO3-SiO2. J Res Natl Stand, Sec A 74A(2):229–232

    Article  Google Scholar 

  • Schmahl WW, Tillmanns E (1987) Isomorphic substitutions, straight Si-O-Si geometry, and disorder of tetrahedral tilting in batisite, (Ba,K)(K,Na)Na(Ti,Fe,Nb,Zr)Si4O14. Neu Jb Mineral, Mh 1987:107–118

    Google Scholar 

  • Shapenkov SV, Zolotarev AA, Zhitova ES, Krivovichev SV, Krzhizhanovskaya MG (2017) High-temperature behavior of synthetic analogues of scottyite BaCu2Si2O7 and colinowensite BaCuSi2O6. Zap Vses Miner Obshchest 146(1):115–124

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–116

    Article  Google Scholar 

  • Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D65:148–155

    Google Scholar 

  • Uvarova YA, Sokolova EV, Hawthorne FC, Liferovich RP, Mitchell RH (2003) The crystal chemistry of shcherbakovite from the Khibina massif, kola peninsula, Russia. Can Mineral 41:1193–1201

    Article  Google Scholar 

  • Uvarova YA, Sokolova EV, Hawthorne FC, Liferovich RP, Mitchell RH, Pekov IV, Zadov AE (2010) Noonkanbahite, BaKNaTi2(Si4O12)O2, a new mineral species: description and crystal structure. Mineral Mag 74:441–450

    Article  Google Scholar 

  • Viani A, Palermo A, Zanardi S, Demitri N, Petrı’cek V, Varini F, Belluso E, Ståhl K, Gualtieri AF (2015) Structure and stability of BaTiSi2O7. Acta Cryst B71:1–11

    Google Scholar 

  • Williams DJ (1984) Organic polymeric and non-polymeric materials with large optical nonlinearities. Angew Chem Int Ed Engl 23:690–703

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Fernando Cámara and an anonymous referee for the detailed useful comments on the manuscript. This work was carried out using facilities of XRD and Geomodel Resource Centers of St. Petersburg State University, and supported by the Foundation of the President of the Russian Federation, grants MK-3296.2015.5 and Nsh-10005.2016.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Zolotarev Jr.

Additional information

Editorial handling: N. V. Chukanov

Electronic supplementary material

ESM 1

(DOCX 32 kb)

ESM 2

(DOCX 15.4 kb)

ESM 3

(DOCX 30.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, A.A., Zhitova, E.S., Gabdrakhmanova, F.A. et al. Batisite, Na2BaTi2(Si4O12)O2, from Inagli massif, Aldan, Russia: crystal-structure refinement and high-temperature X-ray diffraction study. Miner Petrol 111, 843–851 (2017). https://doi.org/10.1007/s00710-017-0497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0497-z

Keywords

Navigation