Skip to main content
Log in

Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8 Ga carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The N-S trending Central-Aldan magnesiocarbonatite province is located in the Aldan-Stanovoy shield (South Yakutia, Russia). Several apatite-dolomitic carbonatite occurrences were studied: Seligdar, Muostalaah, Ust-Chulman and Birikeen. Mineralogical and petrographic investigations indicate intense hydrothermal-metasomatic alteration and metamorphism, which are reflected in the evolution of the mineral parageneses. The primary minerals are fluorapatite, magnetite, ilmenite, dolomite, K-feldspar, phlogopite and accessory zircon, titanite, baddeleyite and thorite. The hydrothermal-metasomatic minerals are quartz, calcite and siderite aggregates with haematite, monazite-(Ce), xenotime-(Y), rutile-(Nb), barite-(Sr), anhydrite, ancylite-(Ce) and rare sulphide mineral phases. Alkaline rocks associated with the Muostalaah complex, were also studied. The following U-Pb ages have been obtained (Ma): 1930 ± 7 for Muostalaah alkaline basic rocks, 1906 ± 6 for Muostalaah carbonatites, and 1880 ± 13 and 1878 ± 17 for Seligdar and Ust-Chulman carbonatites, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agashev AM, Pokhilenko NP, Takazawa E, McDonald JA, Vavilov MA (2008) Primary melting sequence of a deep (250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada. Chem Geol 255(3):317–328

    Article  Google Scholar 

  • Altmaier M, Neck V, Fanghanel T (2004) Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution. Radiochim Acta 92:537–543

    Article  Google Scholar 

  • Ariskin AA, Danyushevsky LV, Konnikov EG, Maas R, Kostitsyn YA, McNeill A, Meffre S, Nikolaev GS, Kislov EV (2015) The Dovyren intrusive complex (Northern Baikal Region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source. Russ Geol Geophys 56(3):528–556

    Article  Google Scholar 

  • Bailey DK (1989) Carbonate melt from the mantle in the volcanoes of South East Zambia. Nature 388:415–418

    Article  Google Scholar 

  • Bailey DK, Kearns S (2011) Dolomitic volcanism in Zambia: Cr and K signatures and comparisons with other dolomitic melts from the mantle. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and evolution of the African lithosphere. Geol Soc Am Special Paper 8, pp 211–222

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineral Soc Series 10, pp 433–468

  • Berezkin VI, Smelov AP, Zedgenizov AN, Kravchenko AA, Popov NV, Timofeev VF, Toropova LI (2015) The geological structure of the central part of the Aldan-Stanovoy shield and chemical compositions of the Early Precambrian rocks (South Yakutia). Novosibirsk (in Russian)

  • Bogatikov OA, Kononova VA, Pervov VA, Zhuravlev DZ (1994) Petrogenesis of Mesozoic potassic magmatism of the Central Aldan: a Sr-Nd isotopic and geodynamic model. Int Geol Rev 36(7):629–644

    Article  Google Scholar 

  • Borisenko AS, Borovikov AA, Vasyukova EA, Pavlova GG, Ragozin AL, Prokop’ev IR, Vladykin NV (2011) Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ Geol Geophys 52(1):144–164

    Article  Google Scholar 

  • Boyarko GY (1983) Geological and geochemical features of the Seligdar apatite deposits. Tomsk State University, Dissertation (in Russian)

    Google Scholar 

  • Boyarko GY (2005) Birikeen phosphate deposit. Proceedings of the Tomsk Polytechnic University 308(1):34–38 (in Russian)

    Google Scholar 

  • Bulakh AG, Zolotarev AA, Bobrova IP, Gulii VI, Vande-Kirkov YuV (1984) The main features of mineralogy and genesis of the Seligdar apatite deposit (Aldan crystalline shield). Zapiski vsesoyuznogo mineralogicheskogo obchestva, CXIII (4):398–410 (in Russian)

  • Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46(4):779–806

    Article  Google Scholar 

  • Chakhmouradian AR, Böhm CO, Demèny A, Reguir EP, Hegner E, Creaser RA, Halden NM, Yang P (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112S:347–357

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Kressall RD, Crozier J, Pisiak LK, Sidhu R, Yang P (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol Rev 64:642–666

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274-275:188–213

    Article  Google Scholar 

  • Chebotarev DA, Doroshkevich AG, Klemd R, Karmanov NS (2017) Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Periodico di Mineralogia 86(2):99–118

    Google Scholar 

  • Chomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51(6):661–671

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J Petrol 39(11–12):1953–1964

    Google Scholar 

  • Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119(4):511–525

    Article  Google Scholar 

  • Donskaya TV, Gladkochub DP, Kovach VP, Mazukabzov AM (2005) Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian craton. Petrology 13(3):253–279

    Google Scholar 

  • Doroshkevich AG, Kobylkina OV, Ripp GS (2003) Role of sulfates in the formation of carbonatites in the Western Transbaikal region. Dokl Earth Sci 388(1):131–134

    Google Scholar 

  • Doroshkevich AG, Wall F, Ripp GS (2007a) Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia. Contrib Mineral Petrol 153(3):339–353

    Article  Google Scholar 

  • Doroshkevich AG, Wall F, Ripp GS (2007b) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral Petrol 90(1–2):19–49

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Viladkar SG, Vladykin NV (2008) The Arshan REE carbonatites, southwestern Transbaikalia, Russia: mineralogy, paragenesis and evolution. Can Mineral 46(4):807–823

    Article  Google Scholar 

  • Doroshkevich AG, Viladkar SG, Ripp GS, Burtseva MV (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can Mineral 47(5):1105–1116

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Moore KR (2010a) Genesis of the Khaluta alkaline-basic Ba-Sr carbonatite complex (West Transbaikala, Russia). Mineral Petrol 98(1–2):245–268

    Article  Google Scholar 

  • Doroshkevich AG, Ripp GS, Viladkar S (2010b) Newania carbonatites, Western India: example of mantle derived magnesium carbonatites. Mineral Petrol 98(1–4):283–295

    Article  Google Scholar 

  • Doroshkevich AG, Prokopyev IR, Izokh AE, Klemd R, Ponomarchuk AV, Nikolaeva IV, Vladykin NV (2018) Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J Asian Earth Sci 154:354–368

    Article  Google Scholar 

  • Egin VI and Kichigin LN (1975) Apatite ore-formation of the Central Aldan region. In: Phosphates of Yakutia. Yakutsk Institute of the Union of Soviet Socialist Republics Academy of Sciences, Yakutsk, pp 75–80 (in Russian)

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, vol 18. Elsevier, Amsterdam-London-New York-Tokyo

  • Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deadyi E (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 93:38–59

    Article  Google Scholar 

  • Entin AR, Tyan OA (1984) Before-carbonatite step of formation of apatite deposits of Seligdar type (Aldan). Siberian Branch, Acad Sci USSR, Yakutsk, 28 pp (in Russian)

  • Entin AP, Zaitzev AI, Labeznik KA, Nenachev NI, Marchintzev VK, Tyan OA (1991) Carbonatites of Yakutia: mineralogy and composition. Yakutsk Scientific Centre, Siberian Branch, Russian Academy of Sciences (in Russian)

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98(1–4):55–76

    Article  Google Scholar 

  • Ernst RE, Hamilton MA, Söderlund U, Hanes JA, Gladkochub DP, Okrugin AV, Kolotilina T, Mekhonoshin AS, Bleeker W, Le Cheminant AN, Buchan KL, Chamberlain KR, Didenko AN (2016) Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat Geosci 9(6):464–469

    Article  Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S:274–283

    Article  Google Scholar 

  • Gladkochub DP, Pisarevsky SA, Donskaya TV, Natapov LM, Mazukabzov AM, Stanevich AM, Sklyarov EV (2006) The Siberian craton and its evolution in terms of the Rodinia hypothesis. Episodes 29(3):169–174

    Article  Google Scholar 

  • Gladkochub DP, Donskaya TV, Ernst R, Mazukabzov AM, Sklyarov EV, Pisarevsky SA, Wingate M, Söderlund U (2012) Proterozoic basic magmatism of the Siberian craton: main stages and their geodynamic interpretation. Geotectonics 46(4):273–284

    Article  Google Scholar 

  • Gongalsky BI, Sukhanov MK, Goltzman YuV (2008) Sm-Nd system of Chiney anorthozite-gabbro-norithe pluton (East Transbaikalia). In: Conference “Problems of ore geology deposits, mineralogy, petrology and geochemistry”, April 22–24, 2008, Moscow. Abstract volume, pp 57–60 (in Russian)

  • Guo ZF, Hertogen J, Liu JQ, Pasteels P, Boven A, Punzalan L, He HY, Luo XJ, Zhang WH (2005) Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China. J Petrol 46(1):33–78

    Article  Google Scholar 

  • Harlov DE, Förster HJ (2003) Fluid-induced nucleation of REE phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88(8–9):1209–1229

    Google Scholar 

  • Harlov DE, Förster HJ, Nijland TG (2002) Fluid induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I Chlorapatite. Am Mineral 87(2–3):245–261

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150(3):268–286

    Article  Google Scholar 

  • Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. J Petrol 40(4):525–548

    Article  Google Scholar 

  • Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39(11–12):1895–1903

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93(5–6):806–820

    Article  Google Scholar 

  • Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 105–148

    Google Scholar 

  • Hou Z, Tian S, Yuan Z, Xie Y, Yin S, Yi L, Fei H, Yang Z (2006) The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett 244(1–2):234–250

    Article  Google Scholar 

  • Issa Filho A, Lima PRAS, Souza OM (1984) Aspectos da geologia do complexo carbonatítico do Barreiro. Brasil. In: Araxá MG (ed) Complexos Carbonatiticos do Brasil: Geologia. CBMM Press, São Paulo, pp 20–44 (in Portuguese)

    Google Scholar 

  • Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River diamondiferous placer, Venezuela: evidence of its metasomatic origin. Can Mineral 48(2):361–374

    Article  Google Scholar 

  • Khomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51(6):661–671

    Article  Google Scholar 

  • Khomich VG, Boriskina NG, Santosh M (2015) Geodynamics of Late Mesozoic PGE, Au, and U mineralization in the Aldan Shield, North Asian Craton. Ore Geol Rev 68:30–42

    Article  Google Scholar 

  • Klemme S, van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133(3–4):439–448

    Article  Google Scholar 

  • Lapin AV, Tolstov AV, Kulikova IM (2016) Distribution of REE, Y, Sc, and Th in the unique complex rare-metal ores of the Tomtor deposit. Geochem Int 54(12):1061–1078

    Article  Google Scholar 

  • Larin AM, Kotov AB, Sal'nikova EB, Kovach VP, Makarev LB, Timashkov AN, Berezhnaya NG, Yakovleva SZ (2000) New data on the age of granites of the Kodar and Tukuringra complexes, eastern Siberia: geodynamic constraints. Petrology 8(3):267–279

    Google Scholar 

  • Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46(4):915–932

    Article  Google Scholar 

  • Lee W, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO + FeO*)-(Na2O + K2O)-(SiO2 + Al2O3 + TiO2)-CO2. J Petrol 39(3):495–517

    Article  Google Scholar 

  • Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral, vol 25. Miner Soc Am, Washington DC, pp 69–106

  • Lomaev VG, Serdyuk SS (2011) The Chuktukonskoye deposit of niobium-rare-earth ores – a priority target for modernization of Russia's rare-metal industry. J Sib Fed Univ Eng Technol 2:132–154 (in Russian)

    Google Scholar 

  • Ludwig K R (2005a) SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 22 pp. http://www.bgc.org/klprogrammenu.html

  • Ludwig KR (2005b). User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 71 pp. http://www.bgc.org/klprogrammenu.html

  • Mekhonoshin AS, Ernst R, Soderlund U, Hamilton MA, Kolotilin ATB, Izokh AE, Polyakov GV, Tolstykh ND (2016) Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russ Geol Geophys 57(5):822–833

    Article  Google Scholar 

  • Minin VA, Vasilenko VB, Kuznetsova LG, Prugov VP (2016) To mineralogy of calcite-magnetite-apatite-serpentine rocks of the Seligdar deposit (Yakutia). Proceedings of the Russian Mineralogical Society CXLV 1, pp 80–104 (in Russian)

  • Mitchell RH (2014) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–664

    Article  Google Scholar 

  • Morogan V (1994) Ijolite versus carbonatite as sources of fenitization. Terra Nova 6:166–176

    Article  Google Scholar 

  • Neimark LA, Larin AM, Nemchin AA, Ovchinnikova GV, Rytsk EY (1998) Anorogenic nature of magmatism in the Northern Baikal volcanic belt: evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd). Petrology 6(2):124–148

    Google Scholar 

  • Nozhkin AD, Bibikova EV, Turkina OM, Ponomarchuk VA (2003) U-Pb, Ar-Ar, and Sm-Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Russ Geol Geophys 44(9):842–852

    Google Scholar 

  • Otto JW, Wyllie PJ (1993) Relationship between silicatemelts and carbonate precipitating melts in CaO-MgO-SiO2-CO2-H2O at 2 kbar. Mineral Petrol 48(2–4):343–365

    Article  Google Scholar 

  • Palmer DAS, Williams-Jones AE (1996) Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. Econ Geol 91(5):934–950

    Article  Google Scholar 

  • Pirajno F, González-Álverez I, Chen W, Kyser KT, Simonetti A, Leduc E, IeGras M (2014) The Gifford Creek ferrocarbonatite complex, Gascoyne Province, Western Australia: associated fenite alteration and a putative link with the ∼1075 Ma Warakurna LIP. Lithos 202–203:100–119

    Article  Google Scholar 

  • Popov NV, Kotov AB, Postnikov AA, Sal'nikova EB, Shaporina MN, Larin AM, Yakovleva SZ, Plotkina YV, Fedoseenko AM (2009) Age and tectonic position of the Chiney Layered Massif, Aldan shield. Dokl Earth Sci 424(1):64–67

    Article  Google Scholar 

  • Prokop'ev IR, Borovikov AA, Pavlova GG, Borisenko AS (2014) The role of chloride-carbonate melts in the formation of Sideritic Carbonatites of the Karasug Fe-F-REE deposit (Tyva Republic, Russia). Dokl Earth Sci 455(2):446–449

    Article  Google Scholar 

  • Prokopyev IR, Borisenko AS, Borovikov AA, Pavlova GG (2016) Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral Petrol 110(6):845–859

    Article  Google Scholar 

  • Prokopyev IR, Doroshkevich AG, Ponomarchuk AV, Sergeev SA (2017) Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol Rev 81:296–308

    Article  Google Scholar 

  • Prokopyev IR, Doroshkevich AG, Redina AA, Obukhov AV (2018) Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia). Mineral Petrol 112(2):257–266

    Article  Google Scholar 

  • Schuth S, Gornyy VI, Berndt J, Shevchenko SS, Sergeev SA, Karpuzov AF, Mansfeldt T (2012) Early Proterozoic U-Pb zircon ages from basement gneiss at the Solovetsky Archipelago, White Sea, Russia. Int J Geosci 3(2):289–296

    Article  Google Scholar 

  • Shironosova GP, Prokopyev IR (2017) REE+Y behavior in fluoride-chloride-sulphide-sulphate environment at hydrothermal stages of alkaline magmatic complex according to thermodynamic modeling. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering 328(12):75–83

    Google Scholar 

  • Shokhonova MN, Donskaya TV, Gladkochub DP, Mazukabzov AM, Paderin IP (2010) Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russ Geol Geophys 51(8):815–832

    Article  Google Scholar 

  • Smelov AP, Nikitin VM, Biryul’kin GV, Popov NV (2001) Metallogenic units of North-Asian craton. In: Parfenov LM, Kuzmin MI (eds) Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). MAIK Nauka Interperiodica, Moscow, pp 301–333 (in Russian)

    Google Scholar 

  • Smirnov FL, Marshintsev ZK, Moskvitina AV (1976) Typomorphic features of apatite deposits and occurrences of the Aldan Shield. In: Phosphorus geochemistry and mineralogy characteristics of apatite, Yakutsk, Union of Soviet Socialist Republics Academy of Sciences, pp 5–31 (in Russian)

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth's mantle. Earth Planet Sci Lett 128(3–4):259–270

    Article  Google Scholar 

  • Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kbar pressure. Geochim Cosmochim Acta 59(18):3671–3683

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282(1–2):58–66

    Article  Google Scholar 

  • Turkina OM, Bibikova EV, Nozhkin AD (2003) Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian craton. Dokl Earth Sci 389(2):159–163

    Google Scholar 

  • Van Wambeke L (1965) A study of some niobium-bbearing minerals of the Lueshe carbonatite deposit (Kivu, Republic of Congo). Euratom, Brussels

    Google Scholar 

  • Vladykin NV, Morikyo T, Miuazaki T (2005) Sr and Nd isotopes geochemistry of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences. In: 5th International Conference “Problems of sources of deep magmatism and plumes”, August 15–23, 2005, Petropavlovsk-Kamchatsky, Russia. Proceedings, vol 1, pp 19–37

  • Vrublevskii VV, Pokrovskii BG, Zhuravlev DZ, Anoshin GN (2003) Composition and age of pechenga linear carbonatite complex, Eniseyskii kryazh. Petrology 11(2):130–147

    Google Scholar 

  • Wall F and Zaitsev AN (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series 10. Mineralogical Society, London, pp 498

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements-a tale of “Ceria” and “Yttria”. Elements 8(5):355–360

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008a) Carbonatite occurrences of the world: map and database. J Petrol 50(1):195–196

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008b) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Mineral 46(4):741–752

    Article  Google Scholar 

  • Xu C, Campbell IH, Kynicky J, Allen CM, Chen Y, Huang Z, Qi L (2008) Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106:12–24

    Article  Google Scholar 

  • Yang XM, Yang XY, Zhang PS, Le Bas MJ (2000) Ba-REE fluorcarbonate minerals from a carbonatite dyke at Bayan obo, Inner Mongolia, North China. Mineral Petrol 70(3–4):221–234

    Article  Google Scholar 

  • Zaitzev AI, Entin AP, Nenashev NI, Labeznik KA, Tyan OA (1992) Geochronology and isotope geochemistry of carbonatites from Yakutia. Yakutsk Scientific Centre, Siberian Branch, Russian Academy of Sciences (in Russian)

  • Zharikov VA, Pertsev NN, Rusinov VL, Callegari E, Fettes DJ (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS Subcommission of the Systematics of Metamorphic Rocks. British Geological Survey

Download references

Acknowledgements

We are grateful to geologists from the Yakutskgeologiya mining company, especially to Viktor S. Minakov; to geologists Alexander A. Kravchenko and Alexey I. Ivanov from the Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences (Yakutsk, Russia), and to the junior researcher Semen M. Krasnousov for the field work organization. The mineralogical and IR spectroscopy analyses were carried out at the Analytical Centre for multi-elemental and isotope research Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). Zircon dating was conducted on the SHRIMP-II at the Centre of Isotopic Research, A.P. Karpinsky Russian Geological Research Institute (St. Petersburg, Russia). We thank two anonymous reviewers, Associate Editor Qiuli Li and Editor-in-Chief Lutz Nasdala for their comments and recommendations, which led to significant improvement of the manuscript. The work is done on state assignment of Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia) and was also partially financially supported by the grant of President of the Russian Federation (МК-1113.2019.5) and the Russian Science Foundation (19-17-00019); geochronological investigations were also carried out according to the grant of the Government of the Russian Federation 14.Y26.31.0029 and were partially supported by the Russian Federation Mega-Grant 14.Y26.31.0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya R. Prokopyev.

Additional information

Editorial handling: Q. Li

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokopyev, I.R., Doroshkevich, A.G., Sergeev, S.A. et al. Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8 Ga carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia). Miner Petrol 113, 329–352 (2019). https://doi.org/10.1007/s00710-019-00661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00661-3

Keywords

Navigation