Skip to main content

Advertisement

Log in

Störungen des Betriebs geothermischer Anlagen durch mikrobielle Stoffwechselprozesse und Erfolg von Gegenmaßnahmen

Microbial metabolic processes affect the operation of geothermal plants and the success of countermeasures

  • Übersichtsbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Zusammenfassung

In geothermischen Anlagen können Biofilme die Mineralbildung und die Injektivität von Bohrungen sowie die Materialbeständigkeit beeinträchtigen. In drei bezüglich Temperatur und Salinität sehr unterschiedlichen Anlagen waren Organismen des Schwefelkreislaufs an Betriebsstörungen beteiligt: Die erhöhte Abundanz von Sulfat-reduzierenden Bakterien (SRB) auf der kalten Seite eines Wärmespeichers wies auf deren Beteiligung an der Korrosion und der Abnahme der Injektivität hin. In allen Anlagen führte der Zutritt von Sauerstoff bzw. der Eintrag von Nitrat zu einer temporären Zunahme Schwefel-oxidierender Bakterien (SOB) und hat vermutlich Korrosionsprozesse beschleunigt. Außerdem hatte in einem Kältespeicher die temporäre Zunahme der SOB ein Filterclogging zur Folge. Aufgrund ihrer entscheidenden Rolle bei mikrobiell induzierter Korrosion (MIC) weisen Änderungen in der Abundanz von SOB und SRB auf die Ursachen mikrobiell bedingter Störungen hin. Zur Beseitigung der Störungen wurden temporäre Erhöhungen der Temperatur, Säuerungen sowie die Zugabe von Wasserstoffperoxid (H2O2) oder Nitrat in den Anlagen getestet und aus mikrobiologischer Sicht bewertet.

Abstract

In the context of geothermal systems, biofilms can influence mineral formation and material resistance against corrosion. In three geothermal plants with different salinity and temperature, organisms of the sulfur cycle have contributed to process failures. On the cold side of a heat store, the increased diversity and abundance of sulfate reducing bacteria (SRB) revealed their participation in corrosion processes and their contribution to a decline in injection efficiency. In all plants, a temporary ingress of oxygen or nitrate led to an increased abundance of sulfur oxidizing bacteria (SOB) that might have accelerated corrosion. In addition, the increase in SOB abundance led to filter clogging in a cold store. Based on their role in microbial-induced corrosion (MIC), changes in the abundance of SOB and SRB may indicate the cause of failure. Measures to control microbial growth, mineral deposits and corrosion, such as temporary increases in temperature, acidification, and addition of hydrogen peroxide (H2O2) and nitrate, were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  • Altschul, S., Gish, W., Miller, W.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  • Amann, R., Glöckner, F.-O., Neef, A.: Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiol. Rev. 20, 191–200 (1997)

    Article  Google Scholar 

  • Bachofen, R., Ferloni, P., Flynn, I.: Microorganisms in the subsurface. Microbiol. Res. 153, 1–22 (1998)

    Article  Google Scholar 

  • Barker, H.A.: Amino acid degradation of by anaerobic bacteria. Annu. Rev. Biochem. 50, 23–40 (1981)

    Article  Google Scholar 

  • Bauer, S., Pfeiffer, T., Boockmeyer, A., Dahmke, A., Beyer, C.: Quantifying induced effects of subsurface renewable energy storage. Energy Procedia. 76, 633–641 (2015)

    Article  Google Scholar 

  • Bødtker, G., Thorstenson, T., Lillebø, B.-L.P., Thorbjørnsen, B.E., Ulvøen, R.H., Sunde, E., Torsvik, T.: The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J. Ind. Microbiol. Biotechnol. 35, 1625–1636 (2008)

    Article  Google Scholar 

  • Bonte, M., Röling, W.F.M., Zaura, E., Wielen, P.W.J.J. van der, Stuyfzand, P.J., Breukelen, B.M. van: Impacts of shallowgeothermal energy production on redox processes and microbial communities. Environ. Sci. Technol. 47, 14476–14484 (2013)

    Article  Google Scholar 

  • Brielmann, H., Lueders, T., Schreglmann, K., Ferraro, F., Avramov, M., Hammerl, V., Blum, P., Bayer, P., Griebler, C.: Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16(2), 77–91 (2011)

    Article  Google Scholar 

  • Brigmon, R.L., Ridder, C. de: Symbiotic relationship of Thiothrix spp. with echinoderms. Appl. Environ. Microbiol. 64, 3491–3495 (1998)

    Google Scholar 

  • Brigmon, R.L., Martin, H.W., Aldrich, H.C.: Biofouling of Groundwater Systems by Thiothrix spp. Curr. Microbiol. 35, 169–174 (1997)

    Article  Google Scholar 

  • Brigmon, R.L., Furlong, M., Whitman, W.B.: Identification of Thiothrix unzii in two distinct ecosystems. Lett. Appl. Microbiol. 36, 88–91 (2003)

    Article  Google Scholar 

  • Bryant, R.D., Jansen, W., Boivin, J., Laishley, E.J., Costerton, J.W.: Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl. Environ. Microbiol. 57(10), 2804–2809 (1991)

    Google Scholar 

  • Costerton, J.W.: Introduction to biofilm. Int. J. Antimicrob. Agents 11, 217–221 (1999a). discussion 237–239

    Article  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M.: Microbial Biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)

    Article  Google Scholar 

  • Costerton, J.W., Stewart, P.S., Greenberg, E.P.: Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284, 1318–1322 (1999b)

    Article  Google Scholar 

  • Cullimore, D.R.: Practical Manual of Groundwater Microbiology, 2. Aufl. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  • Davey, M.E., O’Toole, G.A.: Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64(4), 847–867 (2000)

    Article  Google Scholar 

  • Decho, A.W.: Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol. Eng. 36, 137–144 (2010)

    Article  Google Scholar 

  • Donlan, R.M.: Biofilms: microbial life on surfaces. Emerg. Infect. Dis. J. 8, 881–890 (2002)

    Article  Google Scholar 

  • Flemming, H.C.: Biofilms Encyclopedia of life sciences. John Wiley, Chichester (2008)

    Book  Google Scholar 

  • Flemming, H.C., Wingender, J.: The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010)

    Google Scholar 

  • Ford, H.W., Tucker, D.P.H.: Blockage of drip irrigation filters and emitters by iron-sulfur-bacterial products. HortScience 10, 62–64 (1975)

    Google Scholar 

  • Fredrickson, J.K., Garland, T.R., Hicks, R.J., Thomas, J.M., Li, S.W., McFadden, K.M.: Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiol. J. 7, 53–66 (1989)

    Article  Google Scholar 

  • Fuchs, G.: Oxidation of organic compounds. In: Lengler, J., Drews, G., Schlegel, H.G. (Hrsg.) Biology of the Prokaryotes. Thieme, Stuttgart (1999)

    Google Scholar 

  • Garrett, T.R., Bhakoo, M., Zhang, Z.: Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008)

    Article  Google Scholar 

  • Gjersing, E.L., Codd, S.L., Seymour, J.D., Stewart, P.S.: Magnetic resonance microscopy analysis of advective transport in a biofilm reactor. Biotechnol. Bioeng. 89, 822–834 (2005)

    Article  Google Scholar 

  • Gottschalk, G.: Bacterial metabolism. Springer, New York, S. 208–282 (1986)

    Google Scholar 

  • Griebler, C., Lueders, T.: Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649–677 (2009)

    Article  Google Scholar 

  • Guezennec, J.: Influence of cathodic protection of mild steel on the growth of sulfate-reducing bacteria at 35 °C in marine sediments. Biofouling 3, 339 (1991)

    Article  Google Scholar 

  • Hall-Stoodley, L., Costerton, W., Stoodley, P.: Bacterial biofilms: from the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004)

    Article  Google Scholar 

  • Hamilton, W.A.: Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39, 195–217 (1985)

    Article  Google Scholar 

  • Heitz, E., Sand, W.: Mikrobielle Kontamination und ihre zerstörende Wirkung auf Werkstoffe. In: Brauer, H. (Hrsg.) Emissionen und ihre Wirkungen Buchreihe Umweltschutz, Bd. I, S. 745–785. Springer, Heidelberg (1997)

    Google Scholar 

  • Heitz, E., Sand, W., Flemming, H.C.: Microbially influenced corrosion of materials – scientific and technological aspects. Springer, Heidelberg (1996)

    Book  Google Scholar 

  • Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T.: Bergey’s Manual of Determinative Bacteriology, 9. Aufl. Williams and Wilkins, Baltimore (1994)

    Google Scholar 

  • Hugenholtz, P., Goebel, B.M., Pace, N.R.: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180(18), 4765–4774 (1998)

    Google Scholar 

  • Inagaki, F., Takai, K., Hirayama, H., Yamato, Y., Nealson, K.H., Horikoshi, K.: Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7, 307–317 (2003)

    Article  Google Scholar 

  • Jack, T.R.: Biological corrosion failures. In: Shipley, R.J., Becker, W.T. (Hrsg.) Failure analysis and prevention ASM handbook. S. 881–898. ASM International, Materials Park (2002)

    Google Scholar 

  • Jahnke, L., Jahnke, L.L., Eder, W., Huber, R., Hope, J.M., Hinrichs, K.U., Hayes, J.M., Des Marais, D.J., Cady, S.L., Summons, R.E.: Signature lipids and stable carbon isotope analyses of octopus spring hyperthermophilic communities compared with those of aquificales representatives. Appl. Environ. Microbiol. 67, 5179–5189 (2001)

    Article  Google Scholar 

  • Javaherdashti, R.: Microbiologically Influenced Corrosion. Springer, London (2008)

    Google Scholar 

  • Jesußek, A., Grandel, S., Dahmke, A.: Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ. Earth Sci. 69, 1999–2012 (2013)

    Article  Google Scholar 

  • Jørgensen, B.B., Gallardo, V.A.: Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999)

    Article  Google Scholar 

  • Krummen, M., Hilkert, A.W., Juchelka, D., Duhr, A., Schluter, H.J., Pesch, R.: A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid. Commun. Mass. Spectrom. 18(19), 2260–2266 (2004)

    Article  Google Scholar 

  • Lerm, S., Alawi, M., Miethling-Graff, R., Wolfgramm, M., Rauppach, K., Seibt, A., Würdemann, H.: Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 14(2), 93–104 (2011)

    Article  Google Scholar 

  • Lerm, S., Westphal, A., Miethling-Graff, R., Alawi, M., Seibt, A., Wolfgramm, M., Würdemann, H.: Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17(2), 311–327 (2013)

    Article  Google Scholar 

  • Li, S., Kim, Y., Jeon, K., Kho, Y.: Microbiologically influenced corrosion of underground pipelines under the disbonded coatings. Met. Mater. Int. 6, 281–286 (2000)

    Article  Google Scholar 

  • Lin, H., Chen, G., Zhu, S., Chen, Y., Chen, D., Xu, W., Yu, X., Shi, J.: The interaction of Cu S and Halothiobacillus HT1 Biofilm in microscale using synchroton radiation-based techniques. Int. J. Mol. Sci. 14(6), 11113–11124 (2013)

    Article  Google Scholar 

  • Little, B.J., Lee, J.S.: Microbiologically Influenced Corrosion Wiley Series in Corrosion. John Wiley & Sons, New Jersey (2007)

    Book  Google Scholar 

  • Madigan, M.T., Martinko, J.M.: Brock Mikrobiologie. Pearson Education, Berlin (2009)

    Google Scholar 

  • Morozova, D., Wandrey, M., Alawi, M., Zimmer, M., Vieth, A., Zettlitzer, M., Würdemann, H.: Monitoring of the microbial community composition of the saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int. J. Greenh. Gas Control 4(6), 981–989 (2010)

    Article  Google Scholar 

  • Pikuta, E.V., Hoover, R.B., Tang, J.: Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 33, 183–209 (2007)

    Article  Google Scholar 

  • Postgate, J.R.: The sulfate-reducing bacteria. Cambridge University Press, London (1984)

    Google Scholar 

  • Rampelotto, P.H.: Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2, 1602–1623 (2010)

    Article  Google Scholar 

  • Rasmussen, B.: Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000)

    Article  Google Scholar 

  • Rothschild, L.J., Mancinelli, R.L.: Life in extreme environments. Nature 409, 1092–1101 (2001)

    Article  Google Scholar 

  • Sand, W.: Microbial Corrosion and its inhibition. In: Rehm, H.J., Reed, G., Pühler, A., Stadler, P.J.W. (Hrsg.) Biotechnology, S. 265–318. Wiley-VCH, Weinheim (2001)

    Chapter  Google Scholar 

  • Sand, W., Gehrke, T.: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res. Microbiol. 157, 49–56 (2006)

    Article  Google Scholar 

  • Sayama, M.: Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in a shallow coastal marine sediment. Appl. Environ. Microbiol. 67, 3481–3487 (2001)

    Article  Google Scholar 

  • Seymour, J.D., Gage, J.P., Codd, S.L., Gerlach, R.: Anomalous Fluid Transport in Porous Media Induced by Biofilm Growth. Phys. Rev. Lett. 93, 198103 (2004)

    Article  Google Scholar 

  • Seymour, J.D., Gage, J.P., Codd, S.L., Gerlach, R.: Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media. Adv. Water Resour. 30, 1408–1420 (2007)

    Article  Google Scholar 

  • Stadler, R., Fuerbeth, W., Harneit, K., Grooters, M., Woellbrink, M., Sand, W.: First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochim. Acta 54, 91–99 (2008)

    Article  Google Scholar 

  • Sunde, E., Torsvik, T.: Microbial control of hydrogen sulfide production in oil reservoirs. In: Olliver, B., Magot, M. (Hrsg.) Petroleum Microbiology, S. 201–213. ASM Press, Washington, DC (2005)

    Chapter  Google Scholar 

  • Taylor, C.D., Wirsen, C.O., Gaill, F.: Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 2253–2255 (1999)

    Google Scholar 

  • Telang, A.J., Ebert, S., Foght, J.M., Westlake, D.W.S., Jenneman, G.E., Gevertz, D., Voordouw, G.: Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63, 1785–1783 (1997)

    Google Scholar 

  • Thurman, E.M.: Organic geochemistry of natural waters. Kluwer, Dordrecht (1985)

    Book  Google Scholar 

  • Trudinger, P.A., Swaine, D.J. (Hrsg.): Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam (1979)

    Google Scholar 

  • Ueno, Y., Tatara, M.: Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids. Enzym Microb. Technol. 43, 302–308 (2008)

    Article  Google Scholar 

  • Van Beek, C.G.E.M.: Rehabilitation of clogged discharge wells in the Netherlands. Q. J. Eng. Geol. 22, 75–80 (1989)

    Article  Google Scholar 

  • Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K.J.J., Hassel, A.W., Widdel, F., Stratmann, M.: Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 66, 88–96 (2013)

    Article  Google Scholar 

  • Vetter, A., Mangelsdorf, K., Wolfgramm, M., Rauppach, K., Schettler, G., Vieth-Hillebrand, A.: Variations in fluid chemistry and membrane phospholipid fatty acid composition of the bacterial community in a cold storage groundwater system during clogging events. Appl. Geochem. 27, 1279–1290 (2012)

    Article  Google Scholar 

  • Videla, H.A., Herrera, L.K.: Microbiologically influenced corrosion: looking to the future. Int. Microbiol. 8, 169–180 (2005)

    Google Scholar 

  • Voordouw, G.: Production-Related Petroleum Microbiology: Progress and Prospects. Curr. Opin. Biotechnol. 22, 401–405 (2011)

    Article  Google Scholar 

  • Voordouw, G., Grigoryan, A.A., Lambo, A., Lin, S., Park, H.S., Jack, T.R., Coombe, D., Clay, B., Zhang, F., Ertmoed, R., Miner, K., Arensdorf, J.J.: Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ. Sci. Technol. 43, 9512–9518 (2009)

    Article  Google Scholar 

  • Vroom, J.M., Grauw, K.J. De, Gerritsen, H.C., Bradshaw, D.J., Marsh, P.D., Watson, G.K., Birmingham, J.J., Allison, C.: Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65, 3502–3511 (1999)

    Google Scholar 

  • Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P., Parkes, R.J.: Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388, 573–576 (1997)

    Article  Google Scholar 

  • Westall, F., Wit, M.J. de, Dann, J., Gaast, S. van der, Ronde, C.E.J. de, Gerneke, D.: Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res. 106, 93–116 (2001)

    Article  Google Scholar 

  • Westphal, A., Lerm, S., Miethling-Graff, R., Seibt, A., Wolfgramm, M., Würdemann, H.: Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the north german basin. Appl. Microbiol. Biotechnol. 100, 3277–3290 (2015). doi:10.1007/s00253-015-7181-1

    Article  Google Scholar 

  • Wintermute, E.H., Silver, P.: Dynamics in the mixed microbial concourse. Genes. Dev. 24, 2603–2614 (2010)

    Article  Google Scholar 

  • Wolfgramm, M., Seibt, A.: Geochemisches Monitoring des geothermalen Tiefenspeichers in Neubrandenburg GTV-Tagung 2006, Karlsruhe., S. 388–397 (2006)

    Google Scholar 

  • Wolfgramm, M., Rauppach, K., Puronpää-Schäfer, P.: Berliner Parlamentsbauten – Betrieb, Monitoring und Regenerierungen N2-beaufschlagter Kältespeicherbrunnen. Énerg. Wasser-praxis 61(10), 38–45 (2010)

    Google Scholar 

  • Wolfgramm, M., Rauppach, K., Thorwart, K.: Mineralneubildungen und Partikeltransport im Thermalwasserkreislauf geothermischer Anlagen in Deutschland. Z. Geol. Wiss. 39(3–4), 213–239 (2011)

    Google Scholar 

  • Wolfgramm, M., Birner, J., Lenz, G., Hoffmann, F., Rinke, M.: Erfahrungen bei der Säurestimulation geothermaler Aquifere und Anlagen Karlsruhe, GTV-Tagung 2012. Bd. F11-2., S. 1–12 (2012)

    Google Scholar 

  • Würdemann, H., Westphal, A., Lerm, S., Kleyböcker, A., Teitz, S., Kasina, M., Miethling-Graff, A., Seibt, A., Wolfgramm, M.: Influence of microbial metabolic processes on the operational reliability in a geothermal heat store – Results of long-term monitoring at a full scale plant and first studies in a bypass system. Energy Procedia. 59, 412–417 (2014)

    Article  Google Scholar 

  • Zettlitzer, M., Moeller, F., Morozova, D., Lokay, P., Würdemann, H.: Re-establishment of the proper injectivity of the CO2-injection well Ktzi 201 in Ketzin, Germany. Int. J. Greenh. Gas Control 4(6), 952–959 (2010)

    Article  Google Scholar 

  • Zopfi, J., Kjæ’r, T., Nielsen, L.P., Jørgensen, B.B.: Ecology of Thioploca spp.: nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl. Environ. Microbiol. 67, 5530–5537 (2001)

    Article  Google Scholar 

Download references

Danksagung

Wir danken den Betreibern der geothermischen Anlagen in Neubrandenburg (Stadtwerke Neubrandenburg, insb. Herrn Beuster) und Bad Blumau (Rogner Geothermie GmbH) sowie dem Berliner Reichstag (insb. Herrn Schneider), die uns Zutritt zu den Anlagen ermöglichten und bei der Probennahme unterstützten. Darüber hinaus bedanken wir uns bei den beiden Reviewern für die kritische Durchsicht des Manuskripts. Bedanken möchten wir uns auch für die finanzielle Förderung durch das BMBF sowie das BMU und das BMWi. Die Forschungsarbeiten wurden im Rahmen der Projekte AquiScreen (BMU 0327634), MiProTherm (BMWi 0325201) und Thermo-Inhibitor (BMWi 0325424B) durchgeführt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würdemann, H., Westphal, A., Kleyböcker, A. et al. Störungen des Betriebs geothermischer Anlagen durch mikrobielle Stoffwechselprozesse und Erfolg von Gegenmaßnahmen. Grundwasser 21, 93–106 (2016). https://doi.org/10.1007/s00767-016-0324-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-016-0324-1

Keywords

Navigation