Skip to main content
Log in

Labelling halophilic Archaea using 13C and 15N stable isotopes: a potential tool to investigate haloarchaea consumption by metazoans

  • Method Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The use of stable isotope (SI) labelling and tracing of live diets is currently considered one of the most comprehensive tools to detect their uptake and assimilation by aquatic organisms. These techniques are indeed widely used in nutritional studies to follow the fate of specific microbial dietary components, unraveling trophic interactions. Nevertheless, to the current date our understanding of aquatic trophic relationships has yet to include a whole domain of life, the Archaea. The aim of the present research was, therefore, to describe a halophilic Archaea (haloarchaea) labelling procedure, using the SI 13C and 15N, to enable the application of SI tracing in future studies of haloarchaea consumption by aquatic metazoans. To this end, three 13C enriched carbon sources and two 15N enriched nitrogen sources were tested as potential labels to enrich cells of three haloarchaea strains when supplemented to the culture medium. Our overall results indicate 13C-glycerol as the most effective carbon source to achieve an efficient 13C enrichment in haloarchaea cells, with Δδ13C values above 5000‰ in all tested haloarchaea strains. As for 15N enriched nitrogen sources, both (15NH4)2SO4 and 15NH4Cl seem to be readily assimilated, also resulting in efficient 15N enrichment in haloarchaea cells, with Δδ15N values higher than 20,000‰. We believe that the proposed methodology will allow for the use of SI labelled haloarchaea biomass in feeding tests, potentially providing unambiguous confirmation of the assimilation of haloarchaea biomass by aquatic metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425

    Article  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (2010) Handbook of microbiological media. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bonete MJ, Martínez-Espinosa RM, Pire C, Zafrilla B, Richardson DJ (2008) Nitrogen metabolism in haloarchaea. Saline Syst 4:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasen C, Esser D, Rauch B, Siebers B (2014) Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 78:89–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2011) Archaea—timeline of the third domain. Nat Rev Microbiol 9:51–61

    Article  CAS  PubMed  Google Scholar 

  • De Troch M, Grego M, Chepurnov VA, Vincx M (2007) Food patch size, food concentration and grazing efficiency of the harpacticoid Paramphiascella fulvofasciata (Crustacea, Copepoda). J Exp Mar Biol Ecol 343:210–216

    Article  Google Scholar 

  • Dyall-Smith M (2009) The halohandbook—protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook/index.html. Accessed 1 Sept 2018

  • Falb M et al (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  CAS  Google Scholar 

  • Lobasso S, Lopalco P, Lattanzio VMT, Corcelli A (2003) Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum. J Lipid Res 44:2120–2126

    Article  CAS  PubMed  Google Scholar 

  • Maria TF, De Troch M, Vanaverbeke J, Esteves AM, Vanreusel A (2011) Use of benthic vs planktonic organic matter by sandy-beach organisms: a food tracing experiment with C-13 labelled diatoms. J Exp Mar Biol Ecol 407:309–314

    Article  Google Scholar 

  • Martinez-Espinosa RM, Lledo B, Marhuenda-Egea FC, Bonete MJ (2007) The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei. Extremophiles 11:759–767

    Article  CAS  PubMed  Google Scholar 

  • Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ C-13-labeling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii Spec Nov a dead sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1746–1748

    Article  CAS  Google Scholar 

  • Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18:825–834

    Article  PubMed  Google Scholar 

  • Oren A (2017) Glycerol metabolism in hypersaline environments. Environ Microbiol 19:851–863

    Article  CAS  PubMed  Google Scholar 

  • Pascal PY, Dupuy C, Mallet C, Richard P, Niquil N (2008) Bacterivory by benthic organisms in sediment: quantification using ISN-enriched bacteria. J Exp Mar Biol Ecol 355:18–26

    Article  CAS  Google Scholar 

  • Patra A, Park T, Kim M, Yu ZT (2017) Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 8:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen nov, sp., nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  CAS  PubMed  Google Scholar 

  • Rahmani R, Zarrini G, Aein F, Hosseingholi EZ (2016) Identification of extremely halophilic archaea associated with adult Artemia urmiana. Microbiology 85:386–388

    Article  CAS  Google Scholar 

  • Riddle MR, Baxter BK, Avery BJ (2013) Molecular identification of microorganisms associated with the brine shrimp Artemia franciscana. Aquat Biosyst 9:2046–9063

    Article  CAS  Google Scholar 

  • Rodriguez valera F, Ruiz berraquero F, Ramos cormenzana A (1980) Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon-sources. J Gen Microbiol 119:535–538

    Google Scholar 

  • Sato T, Atomi H (2011) Novel metabolic pathways in Archaea. Curr Opin Microbiol 14:307–314

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA (2012) Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In: Vreeland RH (ed) Advances in understanding the biology of halophilic microorganisms. Springer, Dordrecht, pp 35–58

    Chapter  Google Scholar 

  • Severina LO, Pimenov NV, Plakunov VK (1991) Glucose-transport into the extremely halophilic archaebacteria. Arch Microbiol 155:131–136

    Article  CAS  Google Scholar 

  • Thurber AR, Levin LA, Orphan VJ, Marlow JJ (2012) Archaea in metazoan diets: implications for food webs and biogeochemical cycling. ISME J 6:1602–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toi HT, Boeckx P, Sorgeloos P, Bossier P, Van Stappen G (2013) Bacteria contribute to Artemia nutrition in algae-limited conditions: a laboratory study. Aquaculture 388:1–7

    Article  CAS  Google Scholar 

  • van Hoek AH, van Alen TA, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Article  PubMed  Google Scholar 

  • Ventosa A (2006) Unusual micro-organisms from unusualhabitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity:mechanism and significance. Cambridge University Press, Cambridge, pp 223–253

    Chapter  Google Scholar 

  • von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi and plants. Trends Curr Genet 9:95–120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financed by Ghent University through the Special Research Fund (BOF)—BOF/01N01615. BOF financed a doctoral grant for R.M.A. Lopes-dos-Santos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. A. Lopes-dos-Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by L. Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes-dos-Santos, R.M.A., De Troch, M., Bossier, P. et al. Labelling halophilic Archaea using 13C and 15N stable isotopes: a potential tool to investigate haloarchaea consumption by metazoans. Extremophiles 23, 359–365 (2019). https://doi.org/10.1007/s00792-019-01084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01084-w

Keywords

Navigation