Skip to main content

Advertisement

Log in

Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

Etude comparative de scenarios de changement climatique sur la recharge d’aquifères, dans le Sud-Ouest du Mississippi et le Sud-Est de la Louisiane, Etats Unis d’Amérique

Estudio comparativo de escenarios de cambio climático sobre la recarga de agua subterránea en el sudoeste de Mississippi y el sudeste de Luisiana, EEUU

美國密西西比州西南部和路易斯安那州東南部氣候變遷對地下水補注的比較研究

بررسی مقایسه ای تأثیر سناریوهای تغییر اقلیم در تغذیه آب های زیرزمینی، جنوب غربی میسیسیپی و جنوب شرقی لوئیزیانا، ایالات متحده آمریکا

Estudo comparativo de recarga de água subterrânea em cenários de alterações climáticas na região sudoeste do Mississípi e na região sudeste da Louisiana, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research’s Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab’s (GFDL) model. The PCM model projects recharge change ranging from −33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from −58.1 to +7.1 %. Potential recharge is likely to increase in 2010–2039, but likely to decrease in 2070–2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

Résumé

Un système d’information géographique (SIG) basé sur le cadre d’un bilan hydrique a été développé pour étudier l’impact du changement climatique sur la recharge des aquifères à l’échelle régionale et a été appliqué au système aquifère des Southern Hills dans le Sud-Ouest du Mississippi et le Sud-Est de la Louisiane, aux Etats Unis d’Amérique. Le cadre relie les variables climatiques historiques et les scénarios futurs d’émission des modèles climatiques à un modèle hydrologique, HELP3, afin de quantifier les variations potentielles spatio-temporelles de la recharge entre 1950 et 2099. Le cadre inclut une programmation parallèle afin de diviser un grand nombre de simulations de HELP3 sur plusieurs noyaux d’un supercalculateur, pour accélérer les temps de calcul. Les résultats montrent qu’une large gamme de recharge potentielle prévue pour le système aquifère des Southern Hills a entraîné des projections divergentes des précipitations, de température et de rayonnement solaire en utilisant trois scénarios (B1, A2 et A1F1) du modèle parallèle 1 (PCM) du Centre National pour la recherche atmosphérique et du modèle (GFDL) du Laboratoire national pour l’administration océanique et atmosphérique des dynamiques des fluides géophysiques. Le modèle PCM projette un changement de recharge allant de −33.7 à +19.1 % pour le 21ème siècle. Le modèle GFDL projette une recharge moindre que le PCM, avec une modification de recharge comprise entre −58.7 à +7.1 %. La recharge potentielle est susceptible d’augmenter pour la période 2010–2039, est de diminuer pour la période 2070–2099. La recharge projetée est plus sensible aux changements de la précipitation prévue que pour le rayonnement solaire et la température. L’analyse de l’incertitude confirme que l’incertitude des précipitations projetées conduit à plus de changements dans la recharge potentielle que dans la température projetée sur la zone d’étude.

Resumen

Se desarrolló un sistema de información geográfica (GIS) basado en el marco de referencia del balance de agua para estudiar el impacto del cambio climático sobre la recarga regional del agua subterránea, y se aplicó al sistema acuífero Southern Hills en el sudoeste de Mississippi y el sudeste de Luisiana, EEUU. El marco de referencia vincula variables climáticas históricas y escenarios de futuras emisiones de modelos climáticos con un modelo hidrológico, HELP3, para cuantificar las variaciones espacio temporales de la recarga potencial desde 1950 a 2099. El marco de referencia incluye programación paralela para dividir una gran cantidad de simulaciones HELP3 entre múltiples núcleos de una supercomputadora, para agilizar el cálculo. Los resultados muestran que un amplio rango de la recarga potencial proyectada para el sistema acuífero de Southern Hills resulta de proyecciones divergentes de precipitación, temperatura y radiación solar usando tres escenarios (B1, A2 y A1FI) del Modelo 1 del National Center for Atmospheric Research’s Parallel Climate (PCM) y del modelo de la National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab’s (GFDL). El modelo PCM proyecta cambios en la recarga que varían entre −33.7 y +19.1 % para el siglo 21. El modelo GFDL proyecta menos recarga que el PCM, con un cambio en la recarga que va desde −58.1 a +7.1 %. La recarga potencial es altamente probable que se incremente entre 2010–2039, pero probablemente disminuya entre 2070–2099. La recarga proyectada es más sensible a los cambios en la precipitación proyectada que a la radiación solar y a la temperatura proyectadas. El análisis de incertidumbre confirma que la incertidumbre en la precipitación proyectada produce cambios mayores en la recarga potencial que en la temperatura proyectada para el área de estudio.

摘要

本論文發展以地理資訊系統 (GIS) 為主的水預算架構來研究氣候變遷對區域地下水補注的影響。此架構已被應用到美國密西西比州西南部和路易斯安那州東南部的南丘含水層系統。該架構聯接1950年到2099年歷史氣候變量和未來溫室氣體排放情景到水文模式,HELP3,以量化潛在地下水補注的時空變化。為了加快計算,這個架構包含平行編程來分配大量HELP3模擬到超級電腦內的多個計算內核。研究結果發現南丘含水層系統的地下水補注量預測範圍廣泛。 這是因為國家中心大氣研究的平行氣候模式1 ( PCM) 和美國國家海洋和大氣管理局地球物理流體動力學實驗室 ( GFDL ) 模式下的三個溫室氣體排放情景 (B1,A2和A1FI) 所預測的降水,溫度,和太陽輻射極大差異。PCM模式對21世紀地下水補注的預測變化從-33.7到19.1%。該GFDL模式預測地下水補注小於PCM模式。預測值變化從-58.1至7.1 % 。地下水補注在2010年至2039年較有可能增加,但較有可能在2070年至2099年減少。補注的變化對於預測降雨量比預測的太陽輻射和溫度更敏感。不確定性分析證實在研究區域內預測降水量的不確定性產生的地下水補注變化比預測溫度的不確定性更多。

خلاصه

تغییریک روش بر اساس سیستم اطلاعات جغرافیایی (GIS) و سیستم توازن آب توسعه داده شده است تا بررسی تأثیر تغییر اقلیم در تغذیه آب های زیرزمینی منطقه ای را مطالعه کند و به سیستم آبخوان Southern Hills درجنوب غربی میسیسیپی و جنوب شرقی لوئیزیانا در ایالات متحده آمریکا اعمال شد. این روش متغیرهای اقلیمی تاریخی و سناریوهای انتشار آینده از مدل های اقلیمی را به یک مدل هیدرولوژیکی،HELP3 ، متصل می‌کند تا تغییرات فضایی-مکانی در تغذیه آب های زیرزمینی بالقوه را از سال 1950 تا سال 2099 میلادی ارزیابی کند. این روش برای تسریع محاسبات، شامل برنامه نویسی موازی است تا مقدار زیادی از شبیه سازی های HELP3 را در میان هسته های چندگانه از یک ابر رایانه تقسیم کند. نتایج نشان می دهد که طیف گسترده ای از تغییر در تغذیه آب های زیرزمینی بالقوه برای سیستم آبخوان Southern Hills وجود دارد که حاصل از پیش بینی های متفاوت از بارش، دما و تابش خورشیدی با استفاده از سه سناریوB1، A2 و A1FI از مدل اقلیمی موازی1 (PCM) در مرکز ملی تحقیقات جوی و از مدل آزمایشگاه دینامیک سیالات ژئوفیزیک (GFDL) در سازمان ملی اقیانوسی و جوی است‌. مدل PCM پیش بینی‌می‌کند که آب زیر زمینی‌بالقوه از -33.7 % تا % +19.1در قرن بیست و یکم تغییر کند. مدل GFDL با محدوده تغییرات آب زیر زمینی‌ از -58.1% تا 7.1+ %، آب زیر زمینی‌کمتری نسبت به مدل PCM پیش بینی‌می‌کند. آب زیر زمینی‌بالقوه به احتمال زیاد از سال 2010 تا 2039 میلادی افزایش ولی از سال 2070 تا 2099 میلادی کاهش می‌یابد. آب زیر زمینی‌پیش بینی شده حساسیت بیشتری به تغییرات در بارش پیش بینی شده، نسبت به تابش خورشیدی و دمای پیش بینی شده دارد. تجزیه و تحلیل عدم قطعیت تایید می کند که عدم قطعیت در بارش پیش بینی شده، منجر به تغییرات بیشتری در آب زیر زمینی‌بالقوه، نسبت به دمای پیش بینی شده برای منطقه مورد مطالعه می‌شود.

Resumo

Um sistema de informação geográfico (SIG), com base no balanço hídrico, foi desenvolvido para estudar o impacte das alterações climáticas na recarga regional das águas subterrâneas do sistema aquífero das Colinas do Sul no sudoeste do Mississípi e no sudeste da Louisiana, nos EUA. O trabalho desenvolvido relaciona variáveis climáticas históricas e cenários de emissões futuras de modelos climáticos com o modelo hidrológico HELP3, visando a quantificação das variações da recarga espaciotemporal potencial entre 1950 e 2099. O trabalho inclui programação paralela, de forma a dividir multiplas simulações do HELP3 em múltiplos núcleos de um supercomputador, para tornar a computação mais expedita. Os resultados mostram que uma vasta gama de recarga potencial projetada no sistema aquífero das Colinas do Sul resultam de projeções divergentes da precipitação, da temperatura e da radiação solar usando três cenários (B1, A2 e A1FI) do Modelo 1 do National Center for Atmospheric Research’s Parallel Climate (PCM) e o modelo do National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab (GFDL). Para o século XXI, o modelo PCM projeta alterações de recarga que variam entre −33.7 to +19.1 %. O modelo GFDL projeta valores de recarga menores, com a recarga a variar entre −58.1 a +7.1 %. É provável que a recarga potencial aumente no período 2010–2039 e que diminua no período 2070–2099. A recarga projetada é mais sensível às alterações da precipitação projetada do que aos valores da radiação solar e da temperatura projetadas. Análises de incerteza confirmam que a incerteza na precipitação projetada conduz a mais alterações na recarga potencial do que na temperatura projetada para a área em estudo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57(5):963–974. doi:10.1007/s00254-008-1381-2

    Article  Google Scholar 

  • Ali R, McFarlane D, Varma S, Dawes W, Emelyanova I, Hodgson G (2012) Potential climate change impacts on the water balance of regional unconfined aquifer systems in south-western Australia. Hydrol Earth Syst Sci 16(12):4581–4601. doi:10.5194/hess-16-4581-2012

    Article  Google Scholar 

  • Allen DM, Mackie DC, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol J 12:270–290

    Article  Google Scholar 

  • Allen DM, Cannon AJ, Toews MW, Scibek J (2010) Variability in simulated recharge using different GCMs. Water Resour Res 46:W00F03. doi:10.1029/2009WR008932

    Article  Google Scholar 

  • Alley WM (2001) Ground water and climate. Ground Water 39(2):161–161. doi:10.1007/s10040-003-0261-9

    Article  Google Scholar 

  • Allison G (1988) A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. In: Simmers I (ed) Estimation of Natural Ground Water Recharge. Reidel, Dordrecht, The Netherlands, pp 49–72. doi:10.1007/978-94-015-7780-9_4

    Chapter  Google Scholar 

  • Allison G, Gee G, Tyler S (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58(1):6–14. doi:10.2136/sssaj1994.03615995005800010002x

    Article  Google Scholar 

  • Barthel R, Reichenau TG, Krimly T, Dabbert S, Schneider K, Mauser W (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26(7):1929–1951. doi:10.1007/s11269-012-0001-9

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water, Technical Paper VI of the Intergovernmental Panel on Climate Change, IPCC, Secretariat, Geneva, 210 pp

    Google Scholar 

  • Beigi E, Tsai FT-C (2014) A GIS-based water budget framework for high-resolution groundwater recharge estimation of large-scale humid regions. J Hydrol Eng-ASCE 19(8):05014004. doi:10.1061/(ASCE)HE.1943-5584.0000993

    Article  Google Scholar 

  • Bouraoui F, Vachaud G, Li LZX, Le Treut H, Chen T (1999) Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim Dynam 15:153–161. doi:10.1007/s003820050274

    Article  Google Scholar 

  • Brouyere S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer Basin, Belgium. Hydrogeol J 12:123–134. doi:10.1007/s10040-003-0293-1

    Article  Google Scholar 

  • Buono A (1983) The Southern Hills regional aquifer system of southeastern Louisiana and southwestern Mississippi. US Geol Surv Water Resour Invest Rep 83-4189, 38 pp

  • Calderhead AI, Martel R, Garfias J, Rivera A, Therrien R (2012) Pumping dry: an increasing groundwater budget deficit induced by urbanization, industrialization, and climate change in an over-exploited volcanic aquifer. Environ Earth Sci 66(7):1753–1767. doi:10.1007/s12665-011-1398-9

    Article  Google Scholar 

  • Canadell J, Jackson R, Ehleringer J, Mooney H, Sala O, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108(4):583–595. doi:10.1007/BF00329030

    Article  Google Scholar 

  • Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the California region. Clim Chang 87(1):21–42. doi:10.1007/s10584-007-9377-6

    Article  Google Scholar 

  • Chen ZH, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260(1–4):102–117. doi:10.1016/S0022-1694(01)00606-0

    Article  Google Scholar 

  • Cooper DM, Wilkinson WB, Arnell NW (1995) The effects of climate changes on aquifer storage and river baseflow. Hydrol Sci J 40(5):615–631. doi:10.1080/02626669509491448

    Article  Google Scholar 

  • Croley TE, Luukkonen CL (2003) Potential effects of climate change on ground water in Lansing, Michigan. J Am Water Resour Assoc 39(1):149–163. doi:10.1111/j.1752-1688.2003.tb01568.x

    Article  Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FH (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18(7):1639–1656. doi:10.1007/s10040-010-0625-x

    Article  Google Scholar 

  • Crosbie RS, Scanlon BR, Mpelasoka FS, Reedy RC, Gates JB, Zhang L (2013) Potential climate change effects on groundwater recharge in the High Plains aquifer, USA. Water Resour Res 49:3936–3951. doi:10.1002/wrcr.20292

    Article  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change., In: Houghton JT et al (eds) Climate Change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 526–582

  • Dawes W, Ali R, Varma S, Emelyanova I, Hodgson G, McFarlane D (2012) Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrol Earth Syst Sci 16:2709–2722. doi:10.5194/hess-16-2709-2012

    Article  Google Scholar 

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17. doi:10.1007/s10040-001-0171-7

    Article  Google Scholar 

  • Dettinger MD (2013) Projections and downscaling of 21st century temperatures, precipitation, radiative fluxes and winds for the southwestern US, with focus on Lake Tahoe. Clim Chang 116(1):17–33. doi:10.1007/s10584-012-0501-x

    Article  Google Scholar 

  • Dicken, Connie L, Nicholson, Suzanne W, Horton, John D, Foose, Michael P, Mueller, Julia AL (2005) Integrated geologic map databases for the United States: Alabama, Florida, Georgia, Mississippi, Louisiana, North Carolina, and South Carolina. US Geol Surv Open-File Rep 2005-1323

  • Dripps W, Bradbury K (2007) A simple daily soil–water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeol J 15(3):433–444. doi:10.1007/s10040-007-0160-6

    Article  Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284(1):244–252

    Article  Google Scholar 

  • Fitts CR (2002) Groundwater science. Academic, San Diego

    Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrolo Process 2(3):255–266. doi:10.1002/hyp.3360020306

    Article  Google Scholar 

  • Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large-scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1):122–138. doi:10.1016/j.jhydrol.2003.08.005

    Article  Google Scholar 

  • Gogolev MI (2002) Assessing groundwater recharge with two unsaturated zone modeling technologies. Environ Geol 42(2–3):248–258. doi:10.1007/s00254-001-0494-7

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hidalgo HG, Dettinger MD, Cayan DR (2008) Downscaling with constructed analogues: daily precipitation and temperature fields over the United States. PIER final project report CEC-500-2007-123, California Energy Commission, Sacramento, CA

  • Hiscock K, Sparkes R, Hodgens A (2012) Evaluation of future climate change impacts on European groundwater resources. In: Climate change effects on groundwater resources: a global synthesis of findings and recommendations. IAH International Contributions to Hydrogeology, vol 27, Taylor and Francis, London, pp 351–366

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20(1):1–4. doi:10.1007/s10040-011-0805-3

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Katten-berg A, Maskell K (1996) Climate change 1995: the science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, vol 2. Cambridge University Press, Cambridge, 336 pp

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1):83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J Hydrol 399(1):12–28. doi:10.1016/j.jhydrol.2010.12.028

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River Watershed (Ontario). J Hydrol 338(3):237–250

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF, Normani SD (2002) Recharge estimation for transient ground water modeling. Ground Water 40(6):638–648. doi:10.1016/j.jhydrol.2007.02.036

    Article  Google Scholar 

  • Khire MV, Benson CH, Bosscher PJ (1997) Water balance modeling of earthen final covers. J Geotech Geoenviron 123(8):744–754. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Kirshen PH (2002) Potential impacts of global warming on groundwater in eastern Massachusetts. J Water Res Pl-ASCE 128(3):216–226. doi:10.1061/(ASCE)0733-9496(2002)128:3(216)

    Article  Google Scholar 

  • Kruger A, Ulbrich U, Speth P (2001) Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Phys Chem Earth Pt B 26(11–12):853–861. doi:10.1016/S1464-1909(01)00097-1

    Article  Google Scholar 

  • Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe, 3: impact on agriculture and forestry—a review. Agron Sustain Dev 29(3):433–446. doi:10.1051/agro/2008068

    Article  Google Scholar 

  • Leonard R, Kuzelka B, Seacrest S (1999) Groundwater–climate change interactions. Proc. Specialty Conference on Potential Consequences of Climate Variability and Change to Water Resources of the United States. American Water Resources Association, Bethesda, MD, 122 pp

    Google Scholar 

  • Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10(1):143–152. doi:10.1007/s10040-001-0177-1

    Article  Google Scholar 

  • Lerner DN, Issar A, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Association of Hydrogeologists, vol 8. Heise, Hannover, Germany, p 345 pp

    Google Scholar 

  • Loaiciga HA (2003) Climate change and ground water. Ann Assoc Am Geogr 93(1):30–41

    Article  Google Scholar 

  • Loaiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 267:173–194. doi:10.1016/S0022-1694(99)00179-1

    Article  Google Scholar 

  • Makanjuola M, David J, Makar T, Ahane I (2012) Estimation of groundwater recharge at NCAM, Ilorin for improved irrigation management. C J Eng Sci 6(3):1–6

    Google Scholar 

  • Maurer EP (2013) Gridded meteorological data: 1949–2010, Santa Clara University. http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html. Cited 21 August 2014

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J Clim 15(22):3237–3251. doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2

    Article  Google Scholar 

  • McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol J 18(7):1625–1638. doi:10.1007/s10040-010-0624-y

    Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Mileham L, Taylor RG, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrolog Sci J 54(4):727–738. doi:10.1623/hysj.54.4.727

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536. doi:10.1016/j.rse.2007.04.015

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800. doi:10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Neukum C, Azzam R (2012) Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol J 20(3):547–560. doi:10.1007/s10040-011-0827-x

    Article  Google Scholar 

  • Ng GHC, McLaughlin D, Entekhabi D, Scanlon, BR (2010) Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resour Res 46(7). doi 10.1029/2009WR007904

  • NRCS (1986) Urban hydrology for small watersheds. Technical Release 55, USDA, Natural Resources Conservation Service, Washington, DC, 164 pp

  • NRCS (2013) U.S. general soil map (STATSGO2). USDA, Soil Survey Staff, Natural Resources Conservation Service, Washington, DC. http://sdmdataaccess.nrcs.usda.gov/. Accessed 25 February 2013

  • Peyton RL, Schroeder PR (1988) Field verification of HELP model for landfills. J Environ Eng-ASCE 114(2):247–269. doi:10.1061/(ASCE)0733-9372(1988)114:2(247)

    Article  Google Scholar 

  • Price CP, Nakagaki N, Hitt KJ, Clawges RM (2006) Enhanced historical land-use and land-cover datasets of the U.S. Geological Survey. US Geological Survey Data Series 240, digital maps. http://pubs.usgs.gov/ds/2006/240. Accessed 14 March 2012

  • Raposo JR, Dafonte J, Molinero J (2013) Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain. Hydrogeol J 21(2):459–479. doi:10.1007/s10040-012-0922-7

    Article  Google Scholar 

  • Richardson CW, Wright DA (1984) WGEN: a model for generating daily weather variables. ARS-8, Agricultural Research Service, USDA, Washington, DC, 83 pp

  • Risser DW, Conger RW, Ulrich JE, Asmussen MP (2005) Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania. US Geol Surv Open-File Rep 2005-1333

  • Robbins K (2013) Southern Regional Climate Center, Louisiana State University. Baton Rouge, LA. http://www.srcc.lsu.edu. Accessed 23 June 2012

  • Scanlon BR, Healy RW, Cook PG (2002a) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(2):18–39. doi:10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Scanlon BR, Dutton, A, Sophocleous MA (2002b) Groundwater recharge in Texas. Bureau of Economic Geology, University of Texas at Austin, TX

  • Schibek J, Allen DM (2006) Modelled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42(11), W11405. doi:10.1029/2005WR004742

    Google Scholar 

  • Schroeder PR, Peyton RL (1987) Verification of the hydrologic evaluation of landfill performance (HELP) model using field data. EPA/600/S2-87/050, Hazardous Waste Engineering Research Laboratory, Cincinnati, OH

  • Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL (1994) The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for version 3. EPA/600/R-94/168b, US EPA, Office of Research and Development, Washington, DC

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol 333(2):165–181. doi:10.1016/j.jhydrol.2006.08.005

    Article  Google Scholar 

  • Scott CA, Megdal S, Oroz LA, Callegary J, Vandervoet P (2012) Effects of climate change and population growth on the transboundary Santa Cruz aquifer. Clim Res 51(2):159. doi:10.3354/cr01061

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdés JB, Pérez JG, Baird K, Mata LJ, Maddock Iii T (2007) Modeling climate change impacts - and uncertainty - on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). J Hydrol 347(1–2):48–66. doi:10.1016/j.jhydrol.2007.08.028

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt KB, Tignor M, Miller HL, Chen Z (2007) Climate change 2007: the physical science basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC, vol 4. Cambridge University Press, Cambridge

  • Sophocleous MA (1991) Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124(3):229–241. doi:10.1016/0022-1694(91)90016-B

    Article  Google Scholar 

  • Stocker TF, Dahe Q, Plattner GK (2013) Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: summary for policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  • Stoll S, Hendricks Franssen HJ, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15(1):21–38. doi:10.5194/hess-15-21-2011

    Article  Google Scholar 

  • Toews MW, Allen DM (2009) Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. J Hydrol 374(3):265–281. doi:10.1016/j.jhydrol.2009.06.022

    Article  Google Scholar 

  • US Congress (1996) The Safe Drinking Water Act. Public Law, US Congress, Washington, DC, pp 104–182

  • Vaccaro JJ (1992) Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington. J Geophys Res 97(D3):2821–2833. doi:10.1029/91JD01788

    Article  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1998) The regional impacts of climate change: an assessment of vulnerability—a special report of the IPCC Working Group II. Cambridge University Press, Cambridge

    Google Scholar 

  • Wegehenkel M, Kersebaum KC (2009) An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in northeast Germany. J Plant Nutr Soil Sci 172(6):737–744. doi:10.1002/jpln.200800271

    Article  Google Scholar 

  • Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15(5):891–901. doi:10.1007/s10040-006-0145-x

    Article  Google Scholar 

  • Yip S, Ferro CAT, Stephenson DB, Hawkins E (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim 24(17):4634–4643. doi:10.1175/2011JCLI4085.1

    Article  Google Scholar 

  • Yuan H, Dai Y, Xiao Z, Ji D, Shangguan W (2011) Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens Environ 115(5):1171–1187. doi:10.1016/j.rse.2011.01.001

    Article  Google Scholar 

  • Yusoff I, Hiscock KM, Conway D (2002) Simulation of the impacts of climate change on groundwater resources in eastern England. In: Hiscock KM, Rivett MO, Davidson RM (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:325–344

Download references

Acknowledgements

The study was supported in part by Grant/Cooperative Agreement Number G10AP00136 from the United States Geological Survey and by the Louisiana Water Resources Research Institute. The contents of the study are solely the responsibility of the authors and do not necessarily represent the official views of the USGS. The authors thank Louisiana Optical Network Initiative (LONI) and LSU High Performance Computing for providing supercomputers and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T.-C. Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beigi, E., Tsai, F.TC. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA. Hydrogeol J 23, 789–806 (2015). https://doi.org/10.1007/s10040-014-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1228-8

Keywords

Navigation