Skip to main content
Log in

Contribution to the evaluation of solute transport properties in a karstic aquifer (Yucatan, Mexico)

Contribution à l’évaluation des propriétés de transport de soluté dans un aquifère karstique (Yucatan, Mexique)

Contribución a la evaluación de las propiedades de transporte de solutos en un acuífero cárstico (Yucatán, México)

(墨西哥尤卡坦州)岩溶含水层中溶质传输特性评价

Contribuição para a avaliação de propriedades de transporte de soluto em um aquífero cárstico (Yucatan, México)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In the process of solute transport, dispersivity and hydrodynamic dispersion coefficients are important factors that define the distribution and migration of dissolved salts in the aquifer. Tracer tests were carried out in wells located in the northeast coast of Yucatan, Mexico, whereby only the freshwater thickness of the aquifer was analyzed. Sodium chloride (NaCl) was used as a tracer. Groundwater flow velocity was estimated with the Drost dilution point method. To analyse the solute transport, the analytical model for instantaneous injection was chosen, which is derived from the advection–dispersion equation, and the dispersivity and longitudinal dispersion coefficients were determined. The results indicate that the longitudinal dispersivity and hydrodynamic dispersion of the aquifer vary from 2.56 to 2,500 m and between 1 × 10−3 and 1 × 10−2 m2/s, respectively. In the areas of Telchac Puerto, Dzilam Bravo and San Felipe, advection is the most important solute transport mechanism, while El Cuyo has lower velocity ranges than other locations in the study area and salts tend to disperse. Groundwater flow velocity varies between 3.1 × 10−7 and 8.65 × 10−5 m/s, associated with the flow in the karstic aquifer matrix, with maximum values ​​of 1.5 × 10−4 m/s, associated with the karstification of the aquifer. Groundwater flow velocity increases towards the coast, which is consistent with the fact that the aquifer discharges to the sea. It is observed that in the first 10 m of aquifer, the velocities are higher than those determined in deeper layers, up to an order of magnitude.

Résumé

Dans le processus de transport de soluté, les coefficients de dispersivité et de dispersion hydrodynamique sont des facteurs importants qui définissent la distribution et la migration des sels dissous dans l’aquifère. Des tests de dépistage des puits ont été effectués sur la côte nord-est du Yucatan, au Mexique; seule l’épaisseur de l’eau douce de l’aquifère a été analysée. Le chlorure de sodium (NaCl) est utilisé comme traceur. La vitesse d’écoulement de l’eau souterraine a été estimée en utilisant la méthode du point de dilution de Drost. Pour l’analyse du transport de solutés, le modèle analytique a été choisi pour les injections ponctuelles, dérivées de l’équation d’advection–dispersion (EAD), et les coefficients de dispersivité et de dispersion longitudinale ont été déterminés. Les résultats indiquent que la dispersivité longitudinale et la dispersion hydrodynamique de l’aquifère varient de 2.56 à 2,500 m et de 1 × 10–3 à 1 × 10–2 m2/s, respectivement. A Telchac Puerto, à Dzilam Bravo et à San Felipe, l’advection est le mécanisme de transport de soluté le plus important, tandis qu’El Cuyo a des plages de vélocité inférieures à celles des autres sites de la zone d’étude et que les sels ont tendance à se disperser. La vitesse d’écoulement de l’eau souterraine varie entre 3.1 × 10–7 et 8.65 × 10–5 m/s qui sont associées au débit dans la matrice de l’aquifère karstique, et ont des valeurs maximales de 1.5 × 10–4 m/s associées à la karstification de l’aquifère. La vitesse d’écoulement de l’eau souterraine augmente dans la direction de la côte, ce qui est compatible avec le fait que l’aquifère est rejeté dans la mer. On observe que dans les 10 premiers mètres de l’aquifère, les vitesses sont plus grandes que dans les couches plus profondes jusqu’à un ordre de grandeur.

Resumen

En el proceso de transporte de solutos, la dispersividad y los coeficientes de dispersión hidrodinámica son factores importantes que definen la distribución y migración de las sales disueltas en el acuífero. Se realizaron pruebas de trazado en pozos ubicados en la Costa Noreste de Yucatán, México; se analizó solo el espesor de agua dulce del acuífero. Se utiliza como trazador el cloruro de sodio (NaCl). Se estimó la velocidad de flujo del agua subterránea con el método del punto de dilución de Drost. Para el análisis del transporte de solutos se eligió el modelo analítico para inyecciones puntuales, que deriva de la ecuación advección–dispersión (EAD), y se determinó la dispersividad y los coeficientes de dispersión longitudinal. Los resultados indican que la dispersividad longitudinal y la dispersión hidrodinámica del acuífero varían de 2.56 a 2,500 m y entre 1 × 10–3 y 1 × 10–2 m2/s, respectivamente. En Telchac Puerto, Dzilam Bravo y San Felipe la advección es el mecanismo más importante de transporte de solutos, mientras que en El Cuyo se observan rangos de velocidad menores a las otras ubicaciones de la zona de estudio y las sales tienden a dispersarse. La velocidad de flujo del agua subterránea varía de entre 3.1 × 10–7 y 8.65 × 10–5 m/s que se asocian al flujo en la matriz del acuífero cárstico, y se tienen valores máximos de 1.5 × 10–4 m/s asociados a la carstificación del acuífero. La velocidad de flujo del agua subterránea incrementa en dirección a la costa, lo cual resulta congruente con el hecho de que la descarga del acuífero es hacia el mar. Se observa que en los primeros 10 m de acuífero las velocidades son mayores que en estratos más profundos en hasta un orden de magnitud.

摘要

在溶质传输过程中,弥散性和水动力离差系数是确定含水层中溶解盐分布和迁移的重要因素。在位于墨西哥尤卡坦州东北沿海的井中进行了示踪试验,只分析了含水层淡水厚度。使用氯化钠作为示踪剂。采用Drost稀释点方法估算了地下水流速度。为了分析溶质的传输,选择了瞬时注射解析模型,模型根据平流-分散公式导出,确定了弥散性和纵向分散系数。结果表明,含水层的纵向弥散性及水动力离差分别为2.56 到2,500 m,在1x10–3 和 1 × 10–2 m2/s之间。在Telchac Puerto、 Dzilam Bravo 和 San Felipe地区,平流是最重要的溶质传输机理,而El Cuyo比研究区其它位置具有较低速度范围,盐分趋于分散。地下水流速在3.1 × 10–7 和 8.65 × 10–5 m/s之间,与岩溶含水层基质中水流相关,其最大值为1.5 × 10–4 m/s,这与含水层的岩溶化相关联。地下水流速向海岸方向增加,与含水层向海洋排泄的事实一致。观测到,在含水层的上部10米,速度高于深部确定的速度,高一个数量级。

Resumo

No processo de transporte de solutos, a dispersividade e os coeficientes de dispersão hidrodinâmicos são fatores importantes que definem a distribuição e migração dos sais dissolvidos no aquífero. Testes com traçadores foram realizados em poços localizados na costa nordeste de Yucatán, México; apenas a espessura de água doce do aquífero foi analisada. Cloreto de sódio (NaCl) foi usado como traçador. A velocidade de fluxo das águas subterrâneas foi estimada com o método do ponto de diluição de Drost. Para analisar o transporte de soluto, optou-se pelo modelo analítico para injeção instantânea, que é derivado da equação de dispersão–advecção, e os coeficientes de dispersividade e dispersão longitudinal foram determinados. Os resultados indicam que a dispersividade longitudinal e a dispersão hidrodinâmica do aquífero variam de 2.56 a 2,500 m e entre 1 × 10–3 e 1 × 10–2 m2/s, respectivamente. Nas áreas de Telchac Puerto, Dzilam Bravo e San Felipe, a advecção é o mecanismo de transporte de soluto mais importante, enquanto que El Cuyo tem faixas de velocidade menores do que outras localizações na área de estudo, e os sais tendem a se dispersar. A velocidade de fluxo da água subterrânea varia entre 3.1 × 10–7 e 8.65 × 10–5 m/s, associada ao fluxo na matriz do aquífero cárstico, com valores máximos de 1.5 × 10–4 m/s, associados à carstificação do aquífero. A velocidade de fluxo das águas subterrâneas aumenta em direção à costa, o que é consistente com o fato de que o aquífero descarrega em direção ao mar. Observa-se que, nos primeiros 10 m do aquífero, as velocidades são, até uma ordem de grandeza, maiores que as determinadas em camadas mais profundas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Back W (1992) Coastal karst formed by ground-water discharge, Yucatan, Mexico. International Contributions to Hydrogeology 13, IAH, Goring, UK, pp 461–466

  • Butterlin J, Bonet F (1958) Reconocimiento geologico preliminar del territorio de Quintana Roo [Ppeliminary geological recognition of the territory of Quintana Roo). Bol Asoc Mex Petrol 10:531–570

    Google Scholar 

  • Butterlin J, Bonet F (1963) Las Formaciones Cenozoicas de la parte Mexicana de la Península de Yucatán [The Cenozoic formations of the Mexican part of the Yucatan Peninsula]. Ing Hidrául México 17:63–71

    Google Scholar 

  • Casares-Salazar R, González-Herrera R, Graniel-Castro E (2013) Field scale longitudinal dispersivities estimation in a karstic aquifer. Int J Water 7(1/2):14–28. https://doi.org/10.1504/IJW.2013.051976

    Article  Google Scholar 

  • CONAGUA (2012) Programa Hídrico Regional Visión 2030 (2030 Vision Regional Water Program). CONAGUA, Mexico City

  • Cook PG (2003) A guide to regional flow in fractured rock aquifers. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.6102&rep=rep1&type=pdf. Accessed 18 June 2018

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford-University Press, Oxford, UK

  • Custodio E, Llamas M (1976) Hidrología subterránea [Underground hydrology]. OMEGA, Barcelona

  • Domenico PA, Schwartz FW (1997) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • Drost W, Klotz D, Koch A, Moser H, Neumaier F, Rauert W (1968) Point dilution methods of investigating ground water flow by means of radioisotopes. Water Resour Res 4(1):125–146. https://doi.org/10.1029/WR004i001p00125

    Article  Google Scholar 

  • Escobar D (2000) Determinación de la conductividad hidráulica y de los coeficientes de dispersividad longitudinal y transversal, utilizando un modelo físico [Determination of hydraulic conductivity and longitudinal and transverse dispersivity coefficients, using a physical model]. Universidad Autónoma de Yucatán, Mérida, Mexico

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • García A, Xool M, Euán J, Munguía A, Cervera M (2011) La costa de Yucatán en la perspectiva del desarrollo turístico [The Yucatan coast in the tourism development outlook]. Serie Cono, SEMARNAT-CONABIO, Mexico City

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974. https://doi.org/10.1029/92WR00607

    Article  Google Scholar 

  • Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol 400(1–2):24–40. https://doi.org/10.1016/j.jhydrol.2011.01.023

    Article  Google Scholar 

  • Gonzalez-Herrera RA, Albornoz-Euan BI, Sanchez-Pinto IA, Osorio-Rodriguez JH (2018) El acuífero Yucateco: análisis del riesgo de contaminación con apoyo de un sistema de información geográfica [The Yucatan aquifer: analysis of pollution risk with the support of a geographic information system]. Rev Int Contam Ambie 34(4):667–683. https://doi.org/10.20937/RICA.2018.34.04.09

    Article  Google Scholar 

  • Graniel E, Carrillo J, Cardona A (2003) Dispersividad de solutos en el carst de Yucatán México [Dispersivity of solutes in the karst of Yucatan Mexico]. Ing Rev Acad 3(8):49–56

    Google Scholar 

  • JICA (2004) Estudio de Manejo de Saneamiento Ambiental en la Costa del Estado de Quintana Roo en los Estados Unidos Mexicanos [Study of management of environmental sanitation on the coast of the state of Quintana Roo in the United Mexican States]. JICA, Quintana Roo, México

  • Khaledialidusti R, Kleppe J (2017) A comprehensive framework for the theoretical assessment of the single-well-chemical-tracer tests. J Pet Sci Eng 159:164–181. https://doi.org/10.1016/j.petrol.2017.09.027

    Article  Google Scholar 

  • Moore YH, Stoessell RK, Easley DH (1992) Fresh-water/sea-water relationship within a ground-water flow system, northeastern coast of the Yucatan peninsula. Ground Water 30(3):343–350. https://doi.org/10.1111/j.1745-6584.1992.tb02002.x

    Article  Google Scholar 

  • Neretnieks I (2007) Single well injection withdrawal tests (SWIW) in fractured rock: some aspects on interpretation. SKB, Stockholm, Sweden

  • Nordqvist R, Lindquist A, Thur P, Byegård J, Gustafsson E (2015) A single-well injection-withdrawal (SWIW) experiment with synthetic groundwater. SKB, Stockholm, Sweden

  • Novakowski KS, Lapcevic PA, Voralek J, Bickerton G (1995) Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow. Geophys Res Lett 22(11):1417–1420. https://doi.org/10.1029/95GL00569

    Article  Google Scholar 

  • Novakowski KS, Lapcevic PA, Voralek J, Sudicky E (1998) A note on a method for measuring the transport properties of a formation using a single well. Water Resour Res 34(5):1351–1356. https://doi.org/10.1029/98WR00292

    Article  Google Scholar 

  • Novakowski K, Bickerton G, Lapcevic P, Voralek J, Ross N (2006) Measurements of groundwater velocity in discrete rock fractures. J Contam Hydrol 82(1–2):44–60. https://doi.org/10.1016/j.jconhyd.2005.09.001

    Article  Google Scholar 

  • Osorno TC, Devlin JF, Firdous R (2017) An in-well point velocity probe for the rapid characterization of groundwater velocity at the centimeter-scale. J Hydrol 557:539–546. https://doi.org/10.1016/j.jhydrol.2017.12.033

    Article  Google Scholar 

  • Pérez R, Pacheco J (2004) Vulnerabilidad del agua subterránea a la contaminación de nitratos en el estado de Yucatán [Groundwater vulnerability to nitrate contamination in the state of Yucatan]. Ing Rev Acad 8(1):33–42

    Google Scholar 

  • Perry E, Gamboa J, Reeve A, Sanborn R, Marin L, Villasuso M (1989) Geologic and environmental aspects of surface cementation, North Coast, Yucatan, Mexico. Geology 17:818–821

    Article  Google Scholar 

  • Perry E, Marin L, McClain J, Velazquez G (1995) Ring of cenotes (sinkholes), Northwest Yucatan, Mexico: its hydrogeologic characteristics and possible association with the Chicxulub impact crater. Geology 23(1):17–20. https://doi.org/10.1130/0091-7613(1995)023<0017:ROCSNY>2.3.CO;2

    Article  Google Scholar 

  • Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the northern Yucatan peninsula, Mexico. Int Geol Rev 44(3):191–221. https://doi.org/10.2747/0020-6814.44.3.191

    Article  Google Scholar 

  • Pitrak M, Mares S, Kobr M (2007) A simple borehole dilution technique in measuring horizontal ground water flow. Ground Water 45(1):89–92. https://doi.org/10.1111/j.1745-6584.2006.00258.x

    Article  Google Scholar 

  • Reimus PW, Arnold BW (2017) Evaluation of multiple tracer methods to estimate low groundwater flow velocities. J Contam Hydrol 199:1–13. https://doi.org/10.1016/j.jconhyd.2017.02.003

    Article  Google Scholar 

  • Ruiz A (2000) Determinación de la dispersividad en un medio cárstico mediante el uso de trazadores [Determination of dispersivity in a karstic environment by using tracers]. Universidad Autónoma de Yucatán, Mérida, Mexico

  • Sánchez Pinto IA, Cervantes-Martínez A, González Herrera RA, Vázquez Campos ME, Gutiérrez-Aguirre MA (2015) Evidencia de flujo preferencial al mar, del Cenote Caletita, en Cozumel, México [Evidence of preferential flow to the sea from the Cenote Caletita, in Cozumel, Mexico]. Ing Rev Acad 19(1):1–12

    Google Scholar 

  • Servicio Geológico Mexicano (2005) Carta geológico-minera Tizimín Estado de Yucatán, resumen [Geological-mining chart Tizimín State of Yucatán, summary]. https://mapserver.sgm.gob.mx/InformesTecnicos/CartografiaWeb/T312005MIHA0001_01.PDF. Accessed 18 June 2018

  • Villasuso M, Méndez R (2000) A conceptual model of the aquifer of the Yucatán peninsula. In: Lutz W, Wolgang P, Leonel S (eds) Population, development, and environment on the Yucatan peninsula: from ancient Maya to 2030 Luxembourg Austria. International Institute for Applied System Analysis, Laxenburg, Austria, pp 120–139

  • Villasuso Pino M, Sanchez y Pinto I, Canul Macario C, Baldazo Escobedo G, Casares Salazar R, Souza Cetina J, Poot Euan P, Pech C (2011) Hydrogeology and conceptual model of the karstic coastal aquifer in northern Yucatan State, Mexico. Tropic Subtropic Agroecosyst 13:243–260

    Google Scholar 

  • Zheng C, Bennett G (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New York

Download references

Acknowledgements

We thank the postgraduate and research unit of the Faculty of Engineering of the Autonomous University of Yucatan (FIUADY) and the National Water Commission (CONAGUA), Regional Management of the Yucatan Peninsula, for the support and facilities provided for the realization of the present study as well as a Master’s Thesis. Thanks are also extended to the Academic Body of Hydraulics and Hydrology of the FIUADY for the technical support provided in carrying out the presented work. We are also very grateful to the reviewers whose valuable comments contributed to improve this manuscript.

Funding

We acknowledge the National Council of Science and Technology (CONACYT) for the financing to carry out the corresponding studies.

Author information

Authors and Affiliations

Author notes

  1. Eduardo Graniel-Castro is deceased. This paper is dedicated to his memory.

    • Eduardo Graniel-Castro
Authors

Corresponding author

Correspondence to Roger González-Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canul-Macario, C., González-Herrera, R., Sánchez-Pinto, I. et al. Contribution to the evaluation of solute transport properties in a karstic aquifer (Yucatan, Mexico). Hydrogeol J 27, 1683–1691 (2019). https://doi.org/10.1007/s10040-019-01947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01947-8

Keywords

Navigation