Skip to main content
Log in

A Spatial Mixing Model to Assess Groundwater Dynamics Affected by Mining in a Coastal Fractured Aquifer, China

空间混合模型评价采矿对沿海裂隙含水层的地下水动态特征影响

Ein räumliches Mischmodell zur Abschätzung der Grundwasserdynamik in einem bergbaubeeinflussten Kluftgrundwasserleiter, China

Un modelo de mezcla para relevar la dinámica del agua subterránea afectada por la actividad minera en un acuífero fracturado costero, China

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A linear mixing model method based on principal component analysis (PCA) in three-dimensional space was used to assess groundwater dynamics. PCA was performed on a series of hydrochemical datasets collected from 2009 to 2014 (except in 2010). The results of PCA and a prior conceptual model were used to identify the evolution and potential end-members of water. Then, a mixing calculation code was applied to compute the mixing proportions, and the results were used to reconstruct the mixing process. Deviations were evaluated by comparing the computed and measured concentrations of ions. The accuracy of this method was compared to that of a 2D model that was based on only conservative ions and a 3D model developed in this study that does not consider the water’s physical parameters. The results indicated that the method that considered all of the measured ions, stable isotopes, and physical parameters, performed well. Its accuracy was demonstrated by good agreement between its measured and simulated values. The mean values of deviation for δ18O, δD, K, Na, Ca, Mg, Cl, and SO4 were 0.26, 0.51, 0.19, 0.08, 0.21, 0.15, 0.05, and 0.08, respectively. Five water sources and their groundwater dynamics were interpreted using this model; the results demonstrated that mining has had a substantial influence on the groundwater flow system in both the vertical and lateral directions. Above a depth of -375 m, freshwater is the dominant source, and its proportions in most sites exceeds 40%. Seawater has reached a depth of − 510 m, and its maximum proportion of 82% can be observed at 510-2a. Quaternary water recharged the area between F3 and the prospecting line 2230. Its proportion exceeded 45% at most sites. The recharge depth reached − 510 m at most sites and − 600 m at some sites. Calcium-rich and Mg-rich water were distributed above and below − 510 m, respectively. These distinguishing features indicate that induced ground deformation broke through the Quaternary aquifuge and increased the vertical recharge in the tensional zone, while preventing vertical recharge in the compressive zone at the subsidence center.

抽象

基于主成分分析(PCA)的三维空间线性混合模型评价了地下水动力学特征。2009-2014年水文化学数据(除2010年)用以主成分(PCA)计算,利用PCA计算结果分析水文系统演化和识别概念模型潜在端元变量,再用混合计算规则计算混合比,重塑混合过程。通过对比计算离子浓度和实测离子浓度评价结果合理性。比较了仅考虑保守离子的二维模型和未考虑水物理参数的三维模型的精度;考虑全部监测离子、稳定同位素和物理参数的模型运行良好,精度更高。利用该模型解释了地下水动力学特征,显示采矿对垂向和侧向地下水流都具有重要影响。地下水动力学最显著特征是采矿引起的地面变形破坏了第四系隔水层,增大了应力区垂向补给,同时也阻碍了沉降中心压缩区垂向补给。

Zusammenfassung

Die vorliegende Studie zeigt eine Methode zur Ermittlung der Grundwasserdynamik in einem drei-dimensionalen Raum unter Verwendung eines linearen Mischmodells basierend auf einer Hauptkomponentenanalyse (PCA). Für die PCA wurden hydrochemische Datensätze von 2009 bis 2014 (außer 2010) verwendet. Das Ergebnis der PCA, in Kombination mit dem vorangegangenen konzeptionellen Modell, wurde genutzt, um die Entwicklung der Wasserbeschaffenheit und die potentiellen Endglieder zu ermitteln. Die anschließende Mischungsrechnung wurde genutzt, um die Mischungsverhältnisse zu ermitteln sowie den Mischungsprozess zu rekonstruieren. Die Abweichung entspricht der Differenz zwischen den gemessenen und berechneten Ionenkonzentrationen. Die Genauigkeit der Methode wurde mit dem 2-D-Modell (nur konservative Ionen) und dem in dieser Studie entwickelten 3-D-Modell ohne Berücksichtigung physikalischer Parameter verglichen. Die Ergebnisse zeigen, dass die Methode mit Berücksichtigung aller gemessenen Ionen, der stabilen Isotopen und der physikalischen Parameter leistungsfähig ist und die höchste Genauigkeit erzielt. Mit dem Modell wurde die Grundwasserdynamik interpretiert. Die Ergebnisse zeigen, dass der Bergbau einen großen Einfluss auf das Grundwasserströmungssystem sowohl in vertikaler als auch in horizontaler Richtung hatte. Die erzeugte Geländeverformung zerbrach den Grundwasserstauer und erhöhte die vertikale Neubildung in der Dehnungszone, während im Zentrum der Absenkung (Kompressionszone) die vertikale Neubildung verhindert wurde.

Resumen

El estudio presenta un método que usa un modelo lineal de mezcla basado en PCA (análisis de componentes principales) en un espacio tridimensional para relevar la dinámica del agua subterránea. Se usaron los datos hidroquímicos desde 2009 a 2014 (salvo 2010). Los resultados de PCA se usaron para identificar la evolución del agua y los potenciales miembros finales combinando el modelo conceptual previo. Luego, el cálculo de mezclado fue aplicado para computar las proporciones de mezcla y los resultados dieron una reconstrucción del proceso de mezclado. La desviación fue evaluada por comparación entre las concentraciones medidas y computadas de los iones. La exactitud del método fue comparada con el modelo 2D basado sólo en los iones conservativos y el modelo 3D desarrollado en este estudio pero sin considerar los parámetros físicos del agua. Los resultados mostraron que el método tomando en cuenta todos los iones medidos, isótopos estables y parámetros físicos, mostró la mayor exactitud. La dinámica del agua subterránea fue interpretada por el modelo y los resultados mostraron que la actividad minera tuvo una gran influencia sobre el flujo del agua subterránea tanto en dirección horizontal como vertical. Las características más importantes fueron que la deformación inducida por el suelo rompió el acuífero en cuaternario y aumentó la recarga vertical en zona de tensión, mientras que impidió la recarga vertical en el centro de hundimiento que era una zona de compresión.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Carrera J, Vázquez-Suñé E, Castillo O, Sánchez-Vila X (2004) A methodology to compute mixing ratios with uncertain end-members. Water Resour Res 40(12). https://doi.org/10.1029/2003wr002263

  • Christophersen N, Neal C, Hooper RP (1993) Modelling the hydrochemistry of catchments: a challenge for the scientific method. J Hydrol 152:1–12

    Article  Google Scholar 

  • Gómez JB, Auqué LF, Gimeno MJ (2008) Sensitivity and uncertainty analysis of mixing and mass balance calculations with standard and PCA-based geochemical codes. Appl Geochem 23(7):1941–1956

    Article  Google Scholar 

  • Gu H, Ma F, Guo J, Li K, Lu R (2017a) Hydrochemistry, multidimensional statistics, and rock mechanics investigations for Sanshandao Gold Mine, China. Arab J Geosci 10(3):62. https://doi.org/10.1007/s12517-017-2841-3

    Article  Google Scholar 

  • Gu H, Ma F, Guo J, Li K, Lu R (2017b) Assessment of water sources and mixing of groundwater in a coastal mine: the Sanshandao gold mine, China. Mine Water Environ. 1–15. https://doi.org/10.1007/s10230-017-04558-0

  • Guo WS, Hua YZ, Bo ZD (2006) Structural features and Cenozoic evolution of the Tan-Lu Fault zone in the Laizhou Bay, Bohai Sea. Mar Geol Quat Geol 26:101–110 (Chinese)

    Google Scholar 

  • Henry RC (2003) Multivariate receptor modeling by n-dimensional edge detection. Chemometr Intell Lab 65:179–189

    Article  Google Scholar 

  • Hu S, McDonald R, Martuzevicius D, Biswas P, Grinshpun SA, Kelley A, Reponen T, Lockey J, LeMasters G (2006) UNMIX modeling of ambient PM2.5 near an interstate highway in Cincinnati, OH, USA. Atmos Environ 40:378–395

    Article  Google Scholar 

  • Laaksoharju M, Skårman C, Ekårman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14:861–871

    Article  Google Scholar 

  • Laaksoharju M, Smellie J, Tullborg EL, Gimeno M, Molinero J, Gurban L, Hallbeck L (2008a) Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Appl Geochem 23(7):1761–1795

    Article  Google Scholar 

  • Laaksoharju M, Gascoyne M, Gurban I (2008b) Understanding groundwater chemistry using mixing models. Appl Geochem 23:1921–1940

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Zhang Y, Zhang H (2013) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32(3):195–206

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016a) Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China. Environ Earth Sci 75(2):99. doi:https://doi.org/10.1007/s12665-015-4949-7

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016b) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):15. doi:https://doi.org/10.1007/s12517-015-2059-1

    Article  Google Scholar 

  • Long AJ, Valder JF (2011) Multivariate analyses with end-member mixing to characterize groundwater flow: Wind cave and associated aquifers. J Hydrol 409:315–327

    Article  Google Scholar 

  • Lu L, Xue JY, Chen FR, Zhao LZ (2005) Dissolution of pyrite: an important study subject. Acta Petrol Miner 24(6):666–670 (Chinese)

    Google Scholar 

  • Luo J, Pang Z, Kong Y, Wang Y (2017) Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China. Environ Earth Sci 76(9):343. https://doi.org/10.1007/s12665-017-6659-9

    Article  Google Scholar 

  • Ma F, Zhao H, Guo J (2015) Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes. Environ Earth Sci 74:6703–6715

    Article  Google Scholar 

  • Mathurin FA, Astrom ME, Laaksoharju M, Kalinowski BE, Tullborg EL (2012) Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ Sci Technol 46:12779–12786

    Article  Google Scholar 

  • Parizi SH, Samani N (2013) Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area (Iran) using multivariate statistical techniques. Environ Earth Sci 69:1699–1718

    Article  Google Scholar 

  • Petelet-Giraud E, Negrel P, Gourcy L, Schmidt C, Schirmer M (2007) Geochemical and isotopic constraints on groundwater-surface water interactions in a highly anthropized site. The Wolfen/Bitterfeld megasite (Mulde subcatchment, Germany). Environ Pollut 148:707–717

  • Qian J, Li S, Cao C (2008) Geochemical characteristics and source analysis of inflow of mine water in Wang’ershan gold mine, Shandong. Chin J Geochem 27:82–89

    Article  Google Scholar 

  • Qian H, Li P, Wu J, Zhou Y (2013) Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan Plain, northwest China. Environ Earth Sci 70(1):57–70

    Article  Google Scholar 

  • Qian H, Wu J, Zhou Y, Li P (2014) Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain. Hydrol Process 28:3554–3562

    Article  Google Scholar 

  • Rochdane S, Reddy DV, El Mandour A (2014) Hydrochemical and isotopic characterisation of eastern Haouz plain groundwater, Morocco. Environ Earth Sci 73:3487–3500

    Article  Google Scholar 

  • StatSoft Inc (2011) Electronic Statistics Textbook, StatSoft Inc, Tulsa: http://www.Statsoft.Com/textbook/principal-components-factor-analysis/?Button=1

  • Stetzenbach KJ, Farnham IM, Hodge VF, Johannesson KH (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer. Hydrolog Process 13:2655–2673

    Article  Google Scholar 

  • Sun L, Gui H (2014) Hydro-chemical evolution of groundwater and mixing between aquifers: a statistical approach based on major ions. Appl Water Sci 5:97–104

    Article  Google Scholar 

  • Sun XJ, Li JH (2011) Electrochemical study on pyrite in acidic medias. Metal Mine 9:72–75 (Chinese)

    Google Scholar 

  • Sun L, Chen S, Gui H (2016) Source identification of inrush water based on groundwater hydrochemistry and statistical analysis. Water Pract Technol 11:448–458

    Article  Google Scholar 

  • Tubau I, Vazquez-Sune E, Jurado A, Carrera J (2014) Using EMMA and MIX analysis to assess mixing ratios and to identify hydrochemical reactions in groundwater. Sci Total Environ 470–471:1120–1131

    Article  Google Scholar 

  • Valder JF, Long AJ, Davis AD, Kenner SJ (2012) Multivariate statistical approach to estimate mixing proportions for unknown end members. J Hydrol 460–461(5):65–76

    Article  Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982

    Article  Google Scholar 

  • Wu J, Li P, Qian H (2015) Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci 73(12):8575–8588

    Article  Google Scholar 

  • Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y (2017) Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ Earth Sci 76(13):460. https://doi.org/10.1007/s12665-017-6787-2

    Article  Google Scholar 

  • Ye B, Peng E (1994) Study on the conducting-water structure model in the Sanshandao gold deposit. J Cent-South Inst Min Metall 25:146–150 (Chinese)

    Google Scholar 

  • Yeh HF, Lin HI, Lee CH, Hsu KC, Wu CS (2014) Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6:2849–2861

    Article  Google Scholar 

  • Zhang W, Chen X, Tan H, Zhang Y, Cao J (2015) Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea. Mar Pollut Bull 93:153–162

Download references

Acknowledgements

This research was supported by the National Key Research Projects of China (2016YFC0402802) and the National Science Foundation of China (Grant nos. 41172271, 41372323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshan Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 3962 KB)

Supplementary material 2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Ma, F., Guo, J. et al. A Spatial Mixing Model to Assess Groundwater Dynamics Affected by Mining in a Coastal Fractured Aquifer, China. Mine Water Environ 37, 405–420 (2018). https://doi.org/10.1007/s10230-017-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0505-x

Keywords

Navigation