Skip to main content
Log in

The Evolution and Prevention of Water Inrush Due to Fault Activation at Working Face No. II 632 in the Hengyuan Coal Mine

Die Entstehung und Vorbeugung von Wassereinbruch aufgrund der Aktivierung einer Verwerfung bei der Arbeitsfläche Nr. II 632 in der Hengyuan Kohlemine

La evolución y la prevención de la irrupción de agua debido a la activación de fallas en la cara operativa n. ° II 632 en la mina de carbón de Hengyuan

恒源矿II 632工作面断层活化演化与突水预防

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The water-bearing capacity and abnormal water-bearing area of the coal seam floor of working face no. II 632 at the Hengyuan coal mine was investigated using the network parallel electrical method. Based on the limit equilibrium theory and Mohr–Coulomb yield criterion, we obtained a critical water pressure formula. Using fault DF137 as an example, we found that the abnormal water-bearing phenomena around the working face was related to nearby faults and that the water inrush was mainly due to faults being activated during mining. The pathway of water inrush under the coupled effects of stress induced by mining and the confined water pressure was modelled in Flac3D based on the fluid structure interaction (FSI) method. Considering the economics and operational convenience, grouting the working face floor was recommended to prevent an inrush. Based on a geophysical evaluation, the grouting effectively prevented a potential inrush.

Zusammenfassung

Die wasserführende Kapazität und die unregelmäßig wasserführende Ebene des Kohleflözes der Arbeitsfläche Nr. II 632 in der Hengyuan-Kohlemine wurden unter Verwendung der netzparallelen elektrischen Methode untersucht. Basierend auf der Grenz-Gleichgewichtstheorie und dem Mohr-Coulomb-Ertragskriterium erhielten wir eine kritische Wasserdruckformel. Am Beispiel der Verwerfung DF137 fanden wir heraus, dass die unregelmäßige Wasserführung in der Umgebung der Abbaufläche mit nahegelegenen Störungszonen zusammenhing und dass der Wassereinbruch hauptsächlich auf Verwerfungen zurückzuführen war, die während des Abbaus aktiviert wurden. Der Weg des Wassereinstroms unter den miteinander gekoppelten Auswirkungen der durch den Bergbau induzierten Spannungen und des begrenzten Wasserdrucks wurde in Flac3D basierend auf der Fluidstrukturinteraktionsmethode (FSI-Methode) modelliert. In Anbetracht der Wirtschaftlichkeit und des Nutzungskomforts wurde empfohlen, den Arbeitsflächenboden zu verdichten, um einen Wassereinbruch zu verhindern. Basierend auf einer geophysikalischen Begutachtung wurde durch Injektion ein möglicher Wassereinbruch effektiv verhindert.

Resumen

La capacidad de retención de agua y el área de acumulación de agua anormal del piso de la veta de carbón de la cara de trabajo no. II 632 en la mina de carbón de Hengyuan se investigó utilizando el método eléctrico paralelo de red. Basados en la teoría de equilibrio límite y el criterio de rendimiento de Mohr-Coulomb, obtuvimos una fórmula crítica de presión de agua. Usando la falla DF137 como ejemplo, encontramos que los fenómenos anormales de acumulación de agua alrededor de la superficie de trabajo estaban relacionados con fallas cercanas y que la irrupción de agua se debió principalmente a fallas que se activaron durante la explotación minera. La vía de irrupción de agua bajo los efectos acoplados del estrés inducido por la minería y la presión de agua confinada se modeló en Flac3D basados en el método de interacción de estructura fluida (FSI). Teniendo en cuenta la economía y la conveniencia operativa, se recomendó aplicar lechada en el piso de la superficie de trabajo para evitar una irrupción. Basado en una evaluación geofísica, la lechada evitó de manera efectiva una posible irrupción.

抽象

利用网络平行电法研究了恒源矿II 632工作面煤层底板富水性和富水异常区。基于有限平衡理论和Mohr-Coulomb屈服准则,导出临界水压公式。以DF137断层为例,发现工作面周围异常富水区位于断层附近且底板突水主要由采矿诱发的断层活化引起。在Flac3D中用流固耦合法(FSI)模拟矿压与底板水压耦合作用形成突水通道过程。考虑经济和可操作性,建议采用注浆加固预防底板突水。借助于地球物理评价作用,注浆加固有效地预防了潜在底板突水。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Guo BH, Cheng T, Wang L (2017) Physical simulation of water inrush through the mine floor from a confined aquifer. Mine Water Environ. https://doi.org/10.1007/s10230-017-0488-7

    Google Scholar 

  • Hofmann GF, Scheepers LJ (2011) Simulating fault slip areas of mining induced seismic tremors using static boundary element numerical modelling. Mining Technol 120(1):53–64

    Article  Google Scholar 

  • Hu XY, Wang LG, Lu YL, Yu M (2014) Analysis of insidious fault activation and water inrush from the mining floor. J Chin Univ Min Technol 24(4):477–483

    Google Scholar 

  • Lee D, Yim G-J, Ji S-W, Cheong Y-W (2012) Study on distribution characteristics of some water parameters properties of mine drainage in an oxidation pond, Hwangji–Yuchang coal mine, South Korea. Environ Earth Sci. https://doi.org/10.1007/s12665-012-1735-7

    Google Scholar 

  • Li LC, Yang TH, Liang ZZ, Zhu WC, Tang CA (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85(3–4):276–288

    Google Scholar 

  • Li SC, Zhou ZQ, Li LP et al (2013) Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunn Undergr Space Technol 38:50–58

    Article  Google Scholar 

  • Li WP, Liu Y, Qiao W et al (2017) An improved vulnerability assessment model for floor water bursting from a confined aquifer based on the water inrush coefficient method. Mine Water Environ. https://doi.org/10.1007/s10230-017-0463-3

    Google Scholar 

  • Liu PG, Tao YZ, Shang MT, Yao M (2014) The calculation of mine water yield using the non-continuous flow theory. Environ Earth Sci 71:975–981. https://doi.org/10.1007/s12665-013-2592-8

    Article  Google Scholar 

  • Liu SL, Liu WT, Yin DW (2017) Numerical simulation of the lagging water inrush process from insidious fault in coal seam floor. Geotechnol Geol Eng 35:1013–1021. https://doi.org/10.1007/s10706-016-0156-x

    Article  Google Scholar 

  • Miao XX (2011) Method and practice of water preserved coal mining in arid and semi arid mining area. China Univ of Mining and Technology Press, Xuzhou (in Chinese)

    Google Scholar 

  • Sun J, Wang LG, Hu Y (2019) Mechanical criteria and sensitivity analysis of water inrush through a mining fault above confined aquifers. Arab J Geosci 12(1):4

    Article  Google Scholar 

  • SACMSC (State Administration of Coal Mine Safety of China) (2009) Interpretation of the regulations of mine water disaster prevention. China Univ of Mining and Technology Press, Xuzhou, pp 227–236 (in Chinese)

    Google Scholar 

  • Sainoki A, Hani SM (2014) Dynamic behaviour of mining-induced fault slip. Int J Rock Mech Min Sci 66(1):19–29

    Article  Google Scholar 

  • Wang XY, Wang TT, Wang Q, Liu XM, Li RZ, Liu BJ (2017) Evaluation of floor water inrush based on fractal theory and an improved analytic hierarchy process. Mine Water Environ 36:87–95

    Article  Google Scholar 

  • Wu Q, Guo X, Shen J, Xu S, Liu S, Zeng Y (2017) Risk assessment of water inrush from aquifers underlying the Gushuyuan coal mine, China. Mine Water Environ 36(1):96–103. https://doi.org/10.1007/s10230-016-0410-8

    Article  Google Scholar 

  • Xu JP, Liu SD, Wang B, Zhang P, Gui H (2012) Electrical monitoring criterion for water flow in faults activated by mining. Mine Water Environ 31:172–178

    Article  Google Scholar 

  • Yin SX, HU WY (2008) Study on water blocking performance and natural lift height of rock strata. Coal Geol Explor 36(1):34–36 (in Chinese)

    Google Scholar 

  • Zhang R, Jiang ZQ, Zhou HY, Yang CW, Xiao SJ (2014) Groundwater outbursts from faults above a confined aquifer in the coal mining. Nat Hazards 71(3):1861–1872

    Article  Google Scholar 

  • Zhao Y, Li PF, Tian SM (2013) Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China. J Rock Mech Geotech Eng 5(6):468–477

    Article  Google Scholar 

  • Zhou QL, Juan H, Arturo H (2017) The numerical analysis of fault-induced mine water inrush using the extended finite element method and fracture mechanics. Mine Water Environ. https://doi.org/10.1007/s10230-017-0461-5

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of  China (No. 5140413), the special Subject Grant of National “973” Basic Research program of China (No. 2015CB251602), the Open Projects of State Key Laboratory For Geomechanics and Deep underground Engineering (No. SKLGDUEK1212), the Natural Science Foundation of Anhui Province (No. 1508085ME77), the Major Research Funding Project of Natural Science of Anhui Province University (No. KJ2018ZD010), and the National Science Technology Major (No. 2016X05043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Sun, J., Liu, W. et al. The Evolution and Prevention of Water Inrush Due to Fault Activation at Working Face No. II 632 in the Hengyuan Coal Mine. Mine Water Environ 38, 93–103 (2019). https://doi.org/10.1007/s10230-018-00579-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-00579-w

Keywords

Navigation