Skip to main content

Advertisement

Log in

Impacts of Large-Scale Rare Earth Mining on Surface Runoff, Groundwater, and Evapotranspiration: A Case Study Using SWAT for the Taojiang River Basin in Southern China

Auswirkungen großer Abbauflächen Seltener Erden auf Oberflächenabfluss, Grundwasser und Evapotranspiration: Eine Fallstudie der Auswirkung auf Boden und Wasser im Taojiang Flußbecken in Südchina

Impactos de la minería de tierras raras a gran escala en escorrentía superficial, aguas subterráneas y evapotranspiración: un estudio de caso utilizando SWAT para la cuenca del río Taojiang en el sur de China

大规模稀土开采对地表径流、地下水和蒸散发的影响:以中国南方桃江流域SWAT模型为例

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The extensive rare earth open-pit mining in the Taojiang River basin in southern China have produced a large area of bare land during the last several decades. We assessed the effects of the bare land on surface runoff, groundwater, and evapotranspiration (ET) using the Soil and Water Assessment Tool (SWAT). A total of nine parameters were calibrated using data from 2001 to 2005 and were validated using data from 2006 to 2009, with the observed daily streamflow data as the baseline scenario. The R2 and the Nash–Sutcliffe efficiency index ranged between 0.75 and 0.85 through the simulation periods. Moreover, two historic and four hypothetical land-use scenarios were investigated. Based on the capacity to affect surface runoff, groundwater, and ET, the ranking of land-use types was, from highest to lowest: rare earth bare land, urban land, pasture land, and forest land. Still, due to the relatively small area involved, the rare earth mining did not significantly deteriorate the local hydrological cycle from 2005 to 2015. Protecting the forest, paying attention to urban development, and enhancing infiltration in urban areas should be the top priorities in achieving sustainable development. The presented methodology provided a reliable impact assessment of the water balance components of large-scale open-pit mining activities.

Zusammenfassung

Ausgedehnte Tagebaue Seltener Erden (SE) im Taojiang Flußgebiet in Südchina haben in den letzten Jahrzehnten große Flächen kahlen Landes erzeugt. Unter Benutzung eines Werkzeugs zur Einschätzung von Boden und Wasser (SWAT) untersuchten wir die Effekte des kahlen Landes auf Oberflächenabfluss, Grundwasser und Evapotranspiration (ET). Auf der Basis von Daten aus den Jahren 2001-2005 kalibrierten wir neun Parameter und validierten Daten aus 2006-2009, basierend auf dem Szenario täglich gemessener Abflußdaten. R2 und der Nash-Sutcliffe Effizienzindex (NSE) während der Simulation lag bei 0.75-0.85. Weiters wurde ein früheres und vier hypothetische Landnutzungsszenarien untersucht. Der Einfluß auf Oberflächenabfluss, Grundwasser und ET verschiedener Landnutzungen ergab folgende Reihenfolge, von höchsten zu niedrigsten Werten: Kahles Land der Minen Seltener Erden, städtisches Land, Weideland und Wälder. Wegen der relativ kleinen SE-Bergbaufläche ergab sich von 2005 bis 2015 keine Veränderung des lokalen hydrologischen Zyklus. Eine nachhaltige Entwicklung sollte primär den Schutz der Wälder, die Einschränkung der Urbanisierung und die Förderung der Infiltration in den städtischen Gebieten anstreben. Die vorgestellte Methode ermöglicht eine verläßliche Einschätzung der Wasserbilanzkomponenten in großen Tagebaugebieten.

Resumen

La extensa explotación minera a cielo abierto de tierras raras en la cuenca del río Taojiang en el sur de China ha producido una gran superficie de suelo desnudo durante las últimas décadas. Evaluamos los efectos de la tierra desnuda sobre la escorrentía superficial, el agua subterránea y la evapotranspiración (ET) utilizando la herramienta de evaluación de suelo y agua (SWAT). Se calibraron un total de nueve parámetros utilizando datos de 2001 a 2005 y se validaron utilizando datos de 2006 a 2009, con los datos de flujo diario observados como escenario de referencia. El R2 y el índice de eficiencia Nash-Sutcliffe (NSE) oscilaron entre 0.75-0.85 a través de los períodos de simulación. Además, se investigaron dos escenarios históricos y cuatro hipotéticos de uso de la tierra. Basándose en la capacidad de afectar la escorrentía superficial, las aguas subterráneas y ET, la clasificación de los tipos de uso de la tierra fue, de mayor a menor: tierras desnudas, tierras urbanas, tierras de pastoreo y tierras forestales. Sin embargo, debido a la relativamente pequeña área involucrada, la minería de tierras raras no deterioró significativamente el ciclo hidrológico local de 2005 a 2015. Proteger el bosque, prestar atención al desarrollo urbano y mejorar la infiltración en las áreas urbanas deberían ser las principales prioridades para lograr desarrollo sostenible. La metodología presentada proporcionó una evaluación de impacto confiable de los componentes de balance de agua de las actividades de minería a cielo abierto a gran escala.

近几十年来,中国南方桃江流域大规模稀土露天开采遗留大面积裸露土地。利用SWAT模型评价了裸露土地对地表径流、地下水和蒸散量(ET)的影响。以每日流量观测数据为基线,利用2001~2005年数据推求九个模型参数,利用2006~2009年数据完成模型验证。在整个模拟期间,R2和纳什效率指数(NSE)为0.75-0.85。此外,研究了两个历史的和四个假设的土地使用情景。基于对地表径流、地下水和ET的影响,土地利用类型由高到低排序为:稀土裸露土地、城镇用地、草地和林地。但是,由于面积相对较小,稀土开采并未明显恶化当地2005~2015年水文循环。保护森林、关注城市发展和加强城镇区降水入渗应该是实现区域可持续发展的首要任务。研究为大规模露天采矿活动区的水均衡要素评价提供了可靠方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Arabi M, Frankenberger JR, Engel BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22:3042–3055

    Article  Google Scholar 

  • Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. J Am Water Resour Assoc 35:411–424

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: model use, calibration, and validation. Trans ASABE 55:1345–1352

    Article  Google Scholar 

  • Baker TJ, Miller SN (2013) Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J Hydrol 486:100–111

    Article  Google Scholar 

  • Bao Z, Zhao Z (2008) Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol Rev 33:519–535

    Article  Google Scholar 

  • Can T, Xiaoling C, Jianzhong L, Gassman PW, Sabine S, Josémiguel SP (2015) Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model International. J Agric Biol Eng 8:95–109

    Google Scholar 

  • Chengyou F, Dequan Z, Zailind Z, Song W (2012) Chronology of the tungsten feposits in southern Jiangxi Province, and episodes and zonation of the regional W-Sn mineralization-evidence from high-precision zircon U-Pb, molybdenite Re-Os and muscovite Ar-Ar ages. Acta Geol Sin Engl 86:555–567

    Article  Google Scholar 

  • Feyereisen GW, Strickland TC, Bosch DD, Sullivan DG (2007) Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. T Asabe 50(3):843–855

    Article  Google Scholar 

  • Griensven AV, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324:10–23

    Article  Google Scholar 

  • Gupta CK, Krishnamurthy N (2013) Extractive metallurgy of rare earths. Metall Rev 37:197–248

    Article  Google Scholar 

  • Gyamfi C, Ndambuki J, Salim R (2016) Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 8:588

    Article  Google Scholar 

  • Hu RZ, Zhou MF (2012) Multiple mesozoic mineralization events in south China—an introduction to the thematic issue. Miner Deposita 47:579–588

    Article  Google Scholar 

  • Hua G, Qi H, Tong J (2008) Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J Hydrol 355:106–122

    Article  Google Scholar 

  • Ishihara S, Hua R, Hoshino M, Murakami H (2010) REE abundance and REE minerals in granitic rocks in the Nanling Range, Jiangxi Province, southern China, and generation of the REE-rich weathered crust deposits. Resour Geol 58:355–372

    Article  Google Scholar 

  • Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG (2005) Advances in the application of the SWAT model for water resources management. Hydrol Process 19:749–762

    Article  Google Scholar 

  • Jha MK, Arnold JG, Gassman PW (2007) Water quality modeling for the Raccoon River watershed using SWAT. Trans ASABE 50(2):479–493

    Article  Google Scholar 

  • Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Miner Eng 41:97–114

    Article  Google Scholar 

  • Jung YW, Oh DS, Kim M, Park JW (2010) Calibration of LEACHN model using LH-OAT sensitivity analysis. Nutr Cycl Agroecosyst 87:261–275

    Article  Google Scholar 

  • Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloy Compd 37:1339–1343

    Article  Google Scholar 

  • Kaur R, Srinivasan R, Mishra K, Dutta D, Prasad D, Bansal G (2003) Assessment of a SWAT model for soil and water management in India. Land Use Water Resour Res 3:1–7

    Google Scholar 

  • Krause P (2002) Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys Chem Earth 27:663–673

    Article  Google Scholar 

  • Kruse NA, Bowman JR, Mackey AL, Mccament B, Johnson KS (2012) The lasting impacts of offline periods in lime dosed streams: a case study in Raccoon Creek, Ohio. Mine Water Environ 31:266–272

    Article  Google Scholar 

  • Kundu S, Khare D, Mondal A (2017) Past, present and future land use changes and their impact on water balance. J Environ Manag 197:582–596

    Article  Google Scholar 

  • Kushwaha A, Jain MK (2013) Hydrological simulation in a forest dominated watershed in Himalayan Region using SWAT Model. Int Ser Prog Water Resour Manag 27:3005–3023

    Article  Google Scholar 

  • Lai X, Cai M, Ren F, Xie M, Esaki T (2006) Assessment of rock mass characteristics and the excavation disturbed zone in the Lingxin Coal Mine beneath the Xitian river, China. Int J Rock Mech Min 43:572–581

    Article  Google Scholar 

  • Lee G, Shin Y, Jung Y (2014) Development of web-based RECESS model for estimating baseflow using SWAT. Sustainability 6:2357–2378

    Article  Google Scholar 

  • Li ZX, Li XH (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35:179–182

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Zhang Y, Zhang H (2013) Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water Environ 32:195–206

    Article  Google Scholar 

  • Li Z, Deng X, Wu F, Hasan SS (2015) Scenario analysis for water resources in response to land use change in the middle and upper reaches of the Heihe River basin. Sustainability 7:3086–3108

    Article  Google Scholar 

  • Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24:13224–13234

    Article  Google Scholar 

  • Mao J, Cheng Y, Chen M, Pirajno F (2013) Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Deposita 48:267–294

    Article  Google Scholar 

  • Maulana A, Yonezu K, Watanabe K (2014) Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia. J Earth Sci 25:460–472

    Article  Google Scholar 

  • Mccarty JA, Haggard BE, Matlock MD, Pai N, Saraswat D (2016) Post-model validation of a deterministic watershed model using monitoring data. Trans ASABE 59:1–12

    Google Scholar 

  • Mccullough CD, Etten EJBV (2011) Ecological restoration of novel lake districts: new approaches for new landscapes. Mine Water Environ 30:312–319

    Article  Google Scholar 

  • Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58:1763–1785

    Article  Google Scholar 

  • Mudd GM (2007) An analysis of historic production trends in Australian base metal mining. Ore Geol Rev 32:227–261

    Article  Google Scholar 

  • Narsimlu B, Gosain AK, Chahar BR (2013) Assessment of future climate change impacts on water resources of upper Sind River basin, India using SWAT model. Int Ser Prog Water Resour Manag 27:3647–3662

    Article  Google Scholar 

  • Ng TL, Eheart JW, Cai X, Miguez F (2010) Modeling miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44:7138–7144

    Article  Google Scholar 

  • Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoulageorgiou E, Hendryx MS, Lemly AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop mining consequences. Science 327:148–149

    Article  Google Scholar 

  • Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55:194–205

    Article  Google Scholar 

  • Ruan C, Jun T, Xianping L, Zhigao X, Zhengyan H (2012) The basic research on the weathered crust elution-deposited rare earth ores. Nonferr Met Sci Eng 3:1–13 (in Chinese)

    Google Scholar 

  • Saha PP, Zeleke K (2015) Rainfall-runoff modelling for sustainable water resources management: SWAT model review in Australia. In: Sustainability of integrated water resources management: water governance, climate and ecohydrology. Springer International Publishing, Berlin, pp 563–578

    Chapter  Google Scholar 

  • Sanematsu K, Kon Y, Imai A, Watanabe K, Watanabe Y (2013) Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner Deposita 48:437–451

    Article  Google Scholar 

  • Simandl GJ (2014) Geology and market-dependent significance of rare earth element resources. Miner Deposita 49:889–904

    Article  Google Scholar 

  • Tang X, Li M (2000) Landslide and its prevention of in situ leaching of ion-adsorption rare earth minerals. Met Mine 7:6–8 (in Chinese)

    Google Scholar 

  • Volk M, Bosch D, Nangia V, Narasimhan B (2016) SWAT: agricultural water and nonpoint source pollution management at a watershed scale. Agric Water Manag 175:1–3

    Article  Google Scholar 

  • Weber A, Fohrer N, Möller D (2001) Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecol Model 140:125–140

    Article  Google Scholar 

  • White ED, Easton ZM, Fuka DR, Collick AS, Adgo E, McCartney M, Awulachew SB, Selassie YG, Steenhuis TS (2011) Development and application of a physically based landscape water balance in the SWAT model. Hydrol Process 25:915–925

    Article  Google Scholar 

  • Wu H, Chen B (2015) Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol Eng 76:110–121

    Article  Google Scholar 

  • Wu C, Huang D, Guo Z (1990) REE geochemistry in the weathered crust of granites, Longnan area, Jiangxi Province. Acta Geol Sin Engl 3:193–209

    Google Scholar 

  • Wu J, Miao C, Zhang X, Yang T, Duan Q (2017) Detecting the quantitative hydrological response to changes in climate and human activities. Sci Total Envrion 586:328–337

    Article  Google Scholar 

  • Yang XJ, Lin A, Li XL, Wu Y, Zhou W, Chen Z (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Arnold J, Izaurralde RC, Bosch D (2011) Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrol Process 25:2313–2320

    Article  Google Scholar 

  • Zhang L, Kaixing W, Lingkang C, Ping Z, Huai O (2015) Overview of metallogenic features of ion-adsorption type REE deposits in southern Jiangxi Province. J Chin Soc Rare Earths 33(1):10–17 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2012BAC11B07), the Science and Technology for Public Wellbeing Program of the Ministry of Science and Technology of China (No. 2013GS360203), the Training Programs for Leading Talents by Talents 555 Technology of Gan Poyang Lake of China, the National Natural Science Foundation of China (No. 51774153), the Cultivation of Excellent Doctoral Dissertations in Jiangxi University of Science and Technology (No. 3105500026), and the Subject of Jiangxi Education Department Science and Technology Planning of China (No. GJJ160595). We also thank the anonymous reviewers and editors for their helpful comments, which helped us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Yan or Xianping Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wu, K., Li, Y. et al. Impacts of Large-Scale Rare Earth Mining on Surface Runoff, Groundwater, and Evapotranspiration: A Case Study Using SWAT for the Taojiang River Basin in Southern China. Mine Water Environ 38, 268–280 (2019). https://doi.org/10.1007/s10230-018-00587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-00587-w

Keywords

Navigation