Skip to main content

Advertisement

Log in

Correcting circulation biases in a lower-resolution global general circulation model with data assimilation

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

In this study, we aim at developing a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias by directly adding an additional source term into the model equations. This method is presented and tested first with a twin experiment on a fully controlled Lorenz ’96 model. It is then applied to the lower-resolution global circulation NEMO-LIM2 model, with both a twin experiment and a real case experiment. Sea surface height observations are used to create a forcing to correct the poorly located and estimated currents. Validation is then performed throughout the use of other variables such as sea surface temperature and salinity. Results show that the method is able to consistently correct part of the model bias. The bias correction term is presented and is consistent with the limitations of the global circulation model causing bias on the oceanic currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anderson JL (2009) Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A 61(1):72–83

    Article  Google Scholar 

  • Annan J, Lunt D, Hargreaves J, Valdes P (2005) Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Process Geophys 12:363–371

    Article  Google Scholar 

  • Baek S.-J., Hunt BR, Kalnay E, Ott E, Szunyogh I (2006) Local ensemble kalman filtering in the presence of model bias. Tellus A 58(3):293–306

    Article  Google Scholar 

  • Baek S.-J., Szunyogh I, Hunt BR, Ott E (2009) Correcting for surface pressure background bias in ensemble-based analyses. Mon Weather Rev 137(7):2349–2364

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Beckers J.-M, Rixen M, Vandenbulcke L (2007) Multigrid state vector for data assimilation in a two-way nested model of the Ligurian Sea. J Mar Syst 65(1-4):41–59. http://hdl.handle.net/2268/4260

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A., Beckers J.-M., Weisberg RH, Vandenbulcke L, Lenartz F, Rixen M (2009) Dynamically constrained ensemble perturbations - application to tides on the West Florida Shelf. Ocean Sci 5(3):259–270

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A., Gurgel K.-W., Staneva J, Port A, Beckers J.-M., Stanev EV (2010) Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of High-Frequency radar surface currents - application to the German Bight. Ocean Sci 6(1):161–178

    Article  Google Scholar 

  • Barth A, Beckers J.-M, Troupin C, Alvera-Azcárate A, Vandenbulcke L (2014) Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci Model Dev 7(1):225–241. http://www.geosci-model-dev.net/7/225/2014/

    Article  Google Scholar 

  • Barth A, Canter M, Van Schaeybroeck B, Vannitsem S, Massonnet F, Zunz V, Mathiot P, Alvera-Azcárate A., Beckers J.-M. (2015) Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the southern ocean. Ocean Modell 93:22–39

  • Bell MJ, Martin M, Nichols N (2004) Assimilation of data into an ocean model with systematic errors near the equator. Q J Royal Meteorol Soc 130(598):873–893

    Article  Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon Weather Rev 129(3):420–436

    Article  Google Scholar 

  • Bouillon S, Maqueda MAM, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Modell 27:174–184

    Article  Google Scholar 

  • Broquet G, Moore A, Arango H, Edwards C (2011) Corrections to ocean surface forcing in the california current system using 4d variational data assimilation. Ocean Modell 36(1):116–132

    Article  Google Scholar 

  • Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: Methodology. J Phys Oceanogr 30(2):294–309

    Article  Google Scholar 

  • Chepurin GA, Carton JA, Dee D (2005) Forecast model bias correction in ocean data assimilation. Mon Weather Revi 133(5):1328–1342

    Article  Google Scholar 

  • Dee DP (2004) Variational bias correction of radiance data in the ECMWF system. In: Proceedings of the ECMWF workshop on assimilation of high spectral resolution sounders in NWP, vol 28, pp 97–112

  • Dee DP (2005) Bias and data assimilation. Q J Royal Meteorol Soc 131(613):3323–3344

    Article  Google Scholar 

  • Dee DP, Da Silva A (1998) Data assimilation in the presence of forecast bias. Q J Royal Meteorol Soc 124 (545):269–295

    Article  Google Scholar 

  • Dee DP, Todling R (2000) Data assimilation in the presence of forecast bias: The geos moisture analysis. Mon Weather Rev 128(9):3268–3282

    Article  Google Scholar 

  • Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19:1333–1347

    Article  Google Scholar 

  • Derber JC, Wu W.-S. (1998) The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Weather Rev 126(8):2287–2299

    Article  Google Scholar 

  • Evensen G (2007) Data assimilation: the Ensemble Kalman Filter. Springer, p 279

  • Fertig EJ, BAEK S.-J., Hunt BR, Ott E, Szunyogh I, Aravéquia J. A., Kalnay E, Li H, Liu J (2009) Observation bias correction with an ensemble kalman filter. Tellus A 61(2):210–226

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Friedland B (1969) Treatment of bias in recursive filtering. IEEE Trans Autom Control 14(4):359–367

    Article  Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT Press, Cambridge, MA, p 374

    Google Scholar 

  • Gerbig C, Körner S., Lin J (2008) Vertical mixing in atmospheric tracer transport models: error characterization and propagation. Atmos Chem Phys 8(3):591–602

    Article  Google Scholar 

  • Hunt BR, Kalnay E, Kostelich EJ, Ott E, Patil DJ, Sauer T, Szunyogh I, Yorke JA, Zimin AV (2004) Four-dimensional ensemble Kalman filtering. Tellus 56A:273–277

    Article  Google Scholar 

  • Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys D 230:112–126

    Article  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic, San Diego, California

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year reanalysis project. Bullet Amer Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Keppenne CL, Rienecker MM, Kurkowski NP, Adamec DA (2005) Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction. Nonlinear Process Geophys 12:491–503

    Article  Google Scholar 

  • Leeuwenburgh O (2008) Estimation and correction of surface wind-stress bias in the tropical pacific with the ensemble kalman filter. Tellus A 60(4):716–727

    Article  Google Scholar 

  • Levitus S, Boyer T (1994) World ocean atlas 1994. volume 4. temperature. Technical report., National Environmental Satellite, Data and Information Service, DC, USA

    Google Scholar 

  • Li H, Kalnay E, Miyoshi T (2009) Simultaneous estimation of covariance inflation and observation errors within an ensemble kalman filter. Q J Royal Meteorol Soc 135(639):523–533

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lorenz EN (1996) Predictability: A problem partly solved. In: Proceedings Seminar on Predictability, vol 1

  • Lorenz EN, Emanuel KA (1998) Optimal sites for supplementary weather observations: Simulation with a small model. J Atmos Sci 55:399–414

  • Madec G (2008) NEMO ocean engine. No. 27 in Note du Pole de modélisation Institut Pierre-Simon Laplace. IPSL, France

    Google Scholar 

  • Massonnet F, Goosse H, Fichefet T, Counillon F (2014) Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble kalman filter. J Geophys Res: Oceans 119(7):4168–4184

    Article  Google Scholar 

  • Massonnet F, Mathiot P, Fichefet T, Goosse H, Beatty CK, Vancoppenolle M, Lavergne T (2013) A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980-2008 using data assimilation. Ocean Modell 64:67–75

    Article  Google Scholar 

  • Mathiot P, Goosse H, Fichefet T, Barnier B, Gallée H. (2011) Modelling the seasonal variability of the Antarctic Slope Current. Ocean Sci 7(4):455–470

    Article  Google Scholar 

  • Nerger L, Gregg WW (2008) Improving assimilation of seawifs data by the application of bias correction with a local seik filter. J Mar Syst 73(1):87–102

    Article  Google Scholar 

  • Radakovich JD, Bosilovich MG, Chern J.-D., da Silva A, Todling R, Joiner J, Wu M.-L., Norris P (2004) Implementation of coupled skin temperature analysis and bias correction in the NASA/GMAO finite-volume data assimilation system (FvDAS). In: P1. 3 in Proceedings of the Eighth AMS Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, pp 12?-15

  • Radakovich JD, Houser PR, Da Silva A, Bosilovich MG (2001) Results from global land-surface data assimilation methods. In: AGU Spring Meeting Abstracts, vol 1

  • Rio M, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res: Oceans 116(C7):1978–2012

    Article  Google Scholar 

  • Sakov P, Evensen G, Bertino L (2010) Asynchronous data assimilation with the EnKF. Tellus 62A:24–29

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Dulière V. (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Modell 8(1-2):175–201

    Article  Google Scholar 

  • Van Leeuwen PJ (2001) An Ensemble Smoother with Error Estimates. Mon Weather Rev 129:709–728

  • Van Leeuwen PJ (2010) Nonlinear Data Assimilation in geosciences: an extremely efficient particle filter. Q J Royal Meteorol Soc 136:1991–1996

  • Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere 7(2):451–468

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the project http://www.climate.be/PREDANTAR (SD/CA/04A) from the federal Belgian Science policy and the http://www.data-assimilation.net/ FP7-SPACE-2011 project (grant 283580). Alexander Barth is an F.R.S. - FNRS Research Associate. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. We also thank the CNES and CLS for the mean dynamic topography. This is a MARE publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Canter.

Additional information

Responsible Editor: Lars Nerger

This article is part of the Topical Collection on the 47th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 4-8 May 2015

Appendix

Appendix

One can show that the analysis using the average model state (13) provides the same analysed bias \(\widehat {{\mathbf {b}^{a}}}\) as when the full trajectory is included in the estimation vector (6).

Using i=1,…,N to refer to the ensemble members, the forecast of the model trajectory can be defined as

$$ \begin{array}{c} \mathbf{x}^{\prime f}_{i} = \left[\begin{array}{c}\mathbf{x}^{f(1)}_{i}\\ \mathbf{x}^{f(2)}_{i}\\ {\vdots} \\ \mathbf{x}^{f(m_{\max})}_{i}\\ \widehat{{\mathbf{b}}}^f_{i} \end{array}\right], \end{array} \begin{array}{c} \mathbf{x}^{\prime a}_{i} = \left[\begin{array}{c}\mathbf{x}^{a(1)}_{i}\\ \mathbf{x}^{a(2)}_{i}\\ {\vdots} \\ \mathbf{x}^{a(m_{\max})}_{i}\\ \widehat{{\mathbf{b}}}^{a}_{i} \end{array}\right]. \end{array} $$
(37)

The analysis is provided by

$$ \mathbf{x}^{\prime a}= \mathbf{x}^{\prime f} + \frac{1}{N-1} \mathbf{X}^{\prime f} \underbrace{(\mathbf{X}^{\prime f})^{T} \mathbf{H}^{\prime T} (\mathbf{H}^{\prime} \mathbf{P}^{\prime f} \mathbf{H}^{\prime T} + R )^{-1} ({\mathbf{y}}^{o} -\mathbf{H}^{\prime} \mathbf{x}^{\prime f})}_{\mathbf{W}^{\prime}}, $$
(38)

where

$$ \begin{array}{c} \mathbf{x}^{\prime f} = \frac{1}{N} \sum\limits_{i=1}^{N} \mathbf{x}^{\prime f}_{i}, \end{array}\qquad\qquad \begin{array}{c} \mathbf{x}^{\prime a} = \frac{1}{N} \sum\limits_{i=1}^{N} \mathbf{x}^{\prime a}_{i}, \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} \mathbf{P}^{\prime f} & = &\frac{1}{N-1} \sum\limits_{i=1}^{N} (\mathbf{x}^{\prime f}_{i} - \mathbf{x}^{\prime f})(\mathbf{x}^{\prime f}_{i} - \mathbf{x}^{\prime f})^{T} \end{array} $$
(40)
$$\begin{array}{@{}rcl@{}} & = &\frac{1}{N-1} \mathbf{X}^{\prime f} (\mathbf{X}^{\prime f})^{T}. \end{array} $$
(41)

The observation operator \(\mathbf {H}^{\prime }\) applied to the trajectory \(\mathbf {x}^{\prime }\) also includes a time average and an extraction operator H of the observed part of the model state

$$\begin{array}{@{}rcl@{}} \mathbf{H}^{\prime} \mathbf{x}^{\prime} & = &\sum\limits_{m=1}^{m_{max}} \mathbf{H} \mathbf{x}^{(m)} = \mathbf{H} \overline{\mathbf{x}}, \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} \overline{\mathbf{x}} & = &\frac{1}{m_{max}} \sum\limits_{m=1}^{m_{max}} \mathbf{x}^{(m)}. \end{array} $$
(43)

Hence, the ensemble mean of the analysed bias correction term \(\widehat {{\mathbf {b}^{\prime a}}}\) is contained in the analysed model trajectory \(\mathbf {x}^{\prime a}\). One can also first take the time average of the trajectory, defined as

$$ \begin{array}{c} \mathbf{x}^{\prime\prime f}_{i} = \left[\begin{array}{c}\overline{\mathbf{x}}^{f}_{i} \\ \widehat{{\mathbf{b}}}^{f}_{i} \end{array}\right], \end{array}\qquad\qquad\qquad \begin{array}{c} \mathbf{x}^{\prime\prime a}_{i} = \left[\begin{array}{c}\overline{\mathbf{x}}^{a}_{i} \\ \widehat{{\mathbf{b}}}^{a}_{i} \end{array}\right]. \end{array} $$
(44)

The analysis is then given by

$$ \mathbf{x}^{\prime\prime a}\,=\, \mathbf{x}^{\prime\prime f} \!\,+\, \frac{1}{N\,-\,1} \mathbf{X}^{\prime\prime f} \underbrace{(\mathbf{X}^{\prime\prime f})^{T} \mathbf{H}^{\prime\prime T} (\mathbf{H}^{\prime\prime} \mathbf{P}^{\prime\prime f} \mathbf{H}^{\prime\prime T} \!\,+\, R )^{-1} ({\mathbf{y}}^{o} \,-\,\mathbf{H}^{\prime\prime} \mathbf{x}^{\prime\prime f})}_{\mathbf{W}^{\prime\prime}}, $$
(45)

where

$$ \begin{array}{c} \mathbf{x}^{\prime\prime f}= \frac{1}{N} \sum\limits_{i=1}^{N} \mathbf{x}^{\prime\prime f}_{i}, \end{array}\qquad\qquad\qquad \begin{array}{c} \mathbf{x}^{\prime\prime a}= \frac{1}{N} \sum\limits_{i=1}^{N} \mathbf{x}^{\prime\prime a}_{i}, \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} \mathbf{P}^{\prime\prime f} & = &\frac{1}{N-1} \sum\limits_{i=1}^{N} (\mathbf{x}^{\prime\prime f}_{i} - \mathbf{x}^{\prime\prime f})(\mathbf{x}^{\prime\prime f}_{i} - \mathbf{x}^{\prime\prime f})^{T} \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} & =& \frac{1}{N-1} \mathbf{X}^{\prime\prime f} (\mathbf{X}^{\prime\prime f})^{T}. \end{array} $$
(48)

The ensemble mean of the analysed bias correction term \(\widehat {{\mathbf {b}^{\prime \prime a}}}\) is contained in the analysed mean model state \(\mathbf {x}^{\prime \prime a}\). Given that

$$ \mathbf{H}^{\prime} \mathbf{x}^{\prime}= \mathbf{H}^{\prime\prime} \mathbf{x}^{\prime\prime}, $$
(49)

it follows that \(\mathbf {W}^{\prime } = \mathbf {W}^{\prime \prime }\). Hence, \(\widehat {{\mathbf {b}^{\prime \prime a}}} = \widehat {{\mathbf {b}^{\prime a}}}\), since they are both constrained by the same linear combination of \(\widehat {{\mathbf {b}}}^{f}_{i}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canter, M., Barth, A. & Beckers, JM. Correcting circulation biases in a lower-resolution global general circulation model with data assimilation. Ocean Dynamics 67, 281–298 (2017). https://doi.org/10.1007/s10236-016-1022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-1022-3

Keywords

Navigation