Skip to main content
Log in

Laboratory experiments on three-dimensional deformable granular landslides on planar and conical slopes

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslides of subaerial and submarine origin may generate tsunamis with locally extreme amplitudes and runup. While the landslides themselves are dangerous, the hazards are compounded by the generation of tsunamis along coastlines, in enclosed water bodies, and off continental shelves and islands. Tsunamis generated by three-dimensional deformable granular landslides were studied on planar and conical hill slopes in the three-dimensional NEES tsunami wave basin at Oregon State University based on the generalized Froude similarity. A unique pneumatic landslide tsunami generator (LTG) was deployed to control the kinematics and acceleration of the naturally rounded river gravel and cobble landslides to simulate broad ranges of landslide shapes and velocities along the slope. Lateral and overhead cameras are used to measure the landslide shapes and kinematics, while acoustic transducers provide the shape of the subaqueous deposits. The subaerial landslide shape is extracted from the camera images as the landslide propagates under gravity down the hill slope, and surface reconstruction of the landslide is conducted using the stereo particle image velocimetry (PIV) system on the conical hill slope. Subaerial landslide surface velocities are measured with a planar PIV system on the planar hill slope and stereo PIV system on the conical hill slope. The submarine deposits are characterized by the runout distances and the deposit thickness distributions. Larger cobbles are observed producing hummock type features near the maximum runout length. These unique laboratory landslide experiments serve to validate deformable landslide models as well as provide the source characteristics for tsunami generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004. https://doi.org/10.1016/j.coastaleng.2008.03.003

    Article  Google Scholar 

  • Bardet J-P, Synolakis C, Davis H, Imamura F, Okal E (2003) Landslide tsunamis: recent findings and research directions. Pure Appl Geophys 160:1793–1809

    Article  Google Scholar 

  • Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendson J (2005) The Storegga slide tsunami comparing field observations with numerical solutions. Mar Pet Geol 22:195–208

    Article  Google Scholar 

  • Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraul Res 55:743–758. https://doi.org/10.1080/00221686.2017.1289259

    Article  Google Scholar 

  • Brücker C, Hess D, Kitzhofer J (2012) Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). Meas Sci Technol 24(2):024001

    Article  Google Scholar 

  • Buffington JM, Dietrich WE, Kirchner JW (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resour Res 28:411–425. https://doi.org/10.1029/91WR02529

    Article  Google Scholar 

  • Chen F, Chen X, Xie X, Feng X, Yang L (2013) Full-field 3D measurement using multi-camera digital image correlation system. Opt Lasers Eng 51(9):1044–1052

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2016) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng 49(6):2413–2436. https://doi.org/10.1007/s00603-015-0769-z

    Article  Google Scholar 

  • Di Risio M, DeGirolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta MG, Petrillo AF (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res 114:C01009. https://doi.org/10.1029/2008JC004858

    Article  Google Scholar 

  • Enet F and Grilli ST (2005) Tsunami landslide generation: modeling and experiments. In Proc 5th Int Conf on Ocean Wave Measurement. Madrid, Spain:WAVES 2005

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454

    Article  Google Scholar 

  • Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29:S13–S22

    Article  Google Scholar 

  • Fine I, Rabinovich A, Bornhold B, Thomson R, Kulikov E (2005) The grand banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–47

    Article  Google Scholar 

  • Fritz HM (2002a) Initial phase of landslide-generated impulse waves. PhD thesis. Eidg. Tech. Hochsch, Zürich, Switzerland

  • Fritz HM (2002b) PIV applied to landslide generated impulse waves. In: Adrian RJ et al (eds) Laser techniques for fluid mechanics. Springer, Berlin, pp 305–320

    Chapter  Google Scholar 

  • Fritz HM, Moser P (2003) Pneumatic landslide generator. Int J Fluid Power 4(1):49–57

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Haz 19(1):3–22

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003a) Landslide generated impulse waves. 1. Instantaneous flow fields. Exp Fluids 35:505–519

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003b) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35:520–532

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130(6):287–302

    Article  Google Scholar 

  • Fritz HM, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kalligeris N, Suteja D, Kalsum K, Titov V, Gusman A, Latief H, Santoso E, Sujoko S, Djulkarnaen D, Sunendar H, Synolakis C (2007) Extreme runup from the 17 July 2006 Java tsunami. Geophys Res Lett 34:L12602

    Article  Google Scholar 

  • Fritz HM, Mohammed F, Yoo J (2009) Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys 166(1–2):153–175

    Article  Google Scholar 

  • Fritz HM, Hillaire JV, Molière E, Wei Y, Mohammed F (2013) Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure Appl Geophys 170(9–10):1463–1474. https://doi.org/10.1007/s00024-012-0479-3

    Article  Google Scholar 

  • Garcia D, Orteu JJ, Penazzi L (2002) A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. J Mater Proccess Technol 125:736–742

    Article  Google Scholar 

  • Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. Giorn Geol Appl I:41–52

    Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May, 18, 1980, Mount St. Helens volcano, Washington. U.S. Geological Survey. Open-File Report 96–677

  • Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc A 455:1841–1874

    Article  Google Scholar 

  • Greve R, Hutter K (1993) Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Phil Trans R Soc A 342:573–600. https://doi.org/10.1098/rsta.1993.0033

    Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59. https://doi.org/10.1029/95RG03287

    Article  Google Scholar 

  • Hart DP (1998) Super-resolution PIV by recursive local correlation. In Proc Intl Conf Optical Tech and Image Processing in Fluid, Thermal and Combustion Flow. Yokohama, Japan. VSJ-SPIE98, AB149: 167–180

  • Hartley R, Zissermann A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Heim A (1882) Der Bergsturz von Elm. Z Dtsch Geol Ges 34:74–115 (in German)

    Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zürich (in German)

    Google Scholar 

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136:145–155. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037

    Article  Google Scholar 

  • Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geologic observations of the failure surface. US Army Corps of Engineers Technical Report GL-85-5 (2 volumes)

  • Hsü KR (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):128–140

    Article  Google Scholar 

  • Huang HT, Fielder HF, Wang JJ (1993a) Limitations and improvements of PIV. Part I: limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15:168–174

    Article  Google Scholar 

  • Huang HT, Fielder HF, Wang JJ (1993b) Limitations and improvements of PIV. Part II: particle image distortion, a novel technique. Exp Fluids 15:263–273

    Article  Google Scholar 

  • Huang HT, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427–1440

    Article  Google Scholar 

  • Huber A (1980) Schwallwellen in Seen als Folge von Bergstürzen, VAW Mitteilung 47, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil Trans R Soc A 334:93–138

    Google Scholar 

  • Hutter K, Koch T, Plüss C, Savage SB (1995) Dynamics of avalanches of granular materials from initiation to runout, part II: laboratory experiments. Acta Mech 109:127–165

    Article  Google Scholar 

  • Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain. 2. Experimental tests. J Geophys Res 109:F01015

    Article  Google Scholar 

  • Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international piv challenge. Exp Fluids 57:97. https://doi.org/10.1007/s00348-016-2173-1

    Article  Google Scholar 

  • Keane RR, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Koch T (1989) Bewegung einer Granulatlawine entlang einer gekrümmten Bahn. Diplomarbeit. Technische Hochschule Darmstadt. 122 pp

  • Koch T, Greve R, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. Part II. Experiments and numerical computations. Proc R Soc A 445:415–435

    Article  Google Scholar 

  • Körner HJ (1983) Zur Mechanik der Bergsturzströme von Huascarán, Peru. Hochgebirgsforschung 6:71–110 (in German)

    Google Scholar 

  • Li Z, Komar PD (1986) Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology 33:413–423. https://doi.org/10.1111/j.1365-3091.tb00545.x

    Article  Google Scholar 

  • Lindken R, Merzkirch W (2000) Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water. Exp Fluids 29:S194–S201

    Article  Google Scholar 

  • Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Pet Geol 18:503–512

    Article  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212

    Article  Google Scholar 

  • McFall BC (2014) Physical modeling landslide generated tsunamis in various scenarios from fjords to conical islands, PhD thesis, Ga. Inst of Tech, Atlanta

  • McFall BC, Fritz HM (2016) Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc R Soc A 472:20160052. https://doi.org/10.1098/rspa.2016.0052

    Article  Google Scholar 

  • McFall BC, Fritz HM (2017) Runup of granular landslide generated tsunamis on planar coasts and conical islands. J Geophys Res: Oceans 122:6901–6922. https://doi.org/10.1002/2017JC012832

    Article  Google Scholar 

  • McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. In: Voight B (ed) Rockslides and avalanches, vol 14(A). Elsevier, Amsterdam, pp 197–258. https://doi.org/10.1016/B978-0-444-41507-3.50014-3

    Google Scholar 

  • Miller GS, Andy Take W, Mulligan RP, McDougall S (2017) Tsunamis generated by long and thin granular landslides in a large flume. J Geophys Res Oceans 122:653–668. https://doi.org/10.1002/2016JC012177

    Article  Google Scholar 

  • Mohammed F (2010) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, PhD thesis, Ga. Inst of Tech, Atlanta

  • Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res: Oceans 117:C11015. https://doi.org/10.1029/2011JC007850

    Article  Google Scholar 

  • Mohammed F, Fritz HM (2013) Correction to “Physical modeling of tsunamis generated by three-dimensional deformable granular landslides”. J Geophys Res: Oceans 118:3221. https://doi.org/10.1002/jgrc.20218

    Article  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res: Sol Earth 94:17465–17484

    Article  Google Scholar 

  • Müller L (1964) The rock slide in the Vajont valley. Rock Mech Eng Geol 2(3–4):148–212

    Google Scholar 

  • Nonveiller E (1987) The Vajont reservoir slope failure. Eng Geol 24:493–512

    Article  Google Scholar 

  • Ohmer M (1994) Schnelle und langsame Bewegungen mit der Pneumatik. Pneumatic Tips 39(86):25–29 (in German)

    Google Scholar 

  • Orteu JJ, Garric V, Devy M (1997) Camera calibration for 3D reconstruction: application to the measurement of 3D deformations on sheet metal parts. In Lasers and Optics in Manufacturing III (pp. 252–263). Intl Soc for Optics and Photonics

  • Panizzo A, Girolamo PD and Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110(C12)

  • Plafker G, Ericksen GE (1979) Nevados Huascarán avalanches, Peru. Rockslides and avalanches. In: Voight B (ed) Developments in geotechnical engineering 14A, vol 1. Elsevier, Amsterdam, pp 277–314

    Google Scholar 

  • Plafker G, Erickson GE, Fernández Concha J (1971) Geological aspects of the May 31, 1970 Peru earthquake. Bull Seismol Soc Am 61(3):543–578

    Google Scholar 

  • Plüss C (1987) Experiments on granular avalanches. PhD thesis. Eidg. Tech. Hochsch, Zürich, Switzerland

  • Poncet R, Campbell C, Dias F, Locat J, Mosher D (2010) A study of the tsunami effects of two landslides in the St. Lawrence estuary. Submarine mass movements and their consequences. Adv Nat Technol Hazards Res 28:755–764. https://doi.org/10.1007/978-90-481-3071-9_61

    Google Scholar 

  • Pudasani SP, Wang Y, Sheng L-T, Hsiau S-S, Hutter K, Katzenbach R (2008) Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys Fluids 20(7):073302

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, Berlin

    Book  Google Scholar 

  • Romano A, Di Risio M, Bellotti G, Molfetta MG, Damiani L, De Girolamo P (2016) Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation. Landslides 13:1379–1393. https://doi.org/10.1007/s10346-016-0696-4

    Article  Google Scholar 

  • Roth GI, Mascenik DT, Katz J (1999) Measurements of the flow structure and turbulence within a ship bow wave. Phys Fluids 11:3512–3523

    Article  Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematics of the 1991 Randa rockslide (Valais, Switzerland). Nat Hazards Earth Sys Sci 3:423–433

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of granular material down a rough inclince. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis Acta Mech 86:201–223

    Google Scholar 

  • Scarano F, Riethmuller ML (1999) Iterative multigrid approach in piv image processing with discrete window offset. Exp Fluids 26:513–523

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid piv image processing. Exp Fluids 29:S51–S60

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Rock Eng 5:231–236. https://doi.org/10.1007/BF01301796

    Article  Google Scholar 

  • Shreve RL (1966) Sherman landslide. Alaska Sci 154:1639–1643

    Google Scholar 

  • Shreve RL (1968) Leakage and fluidization in air-lubricated avalanches. Geol Soc Am Bull 79:653–658

    Article  Google Scholar 

  • Synolakis CE, Bardet J, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) Slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc A 458:763–789

    Article  Google Scholar 

  • Tai CY, Wang Y, Gray JMNT, Hutter K (1999) Methods of similitude in granular avalanche flows. In: Hutter K, Wang Y, Beer H (eds) Advances in cold-regions thermal engineering and sciences, lecture notes in physics, vol 533. Springer, Berlin, pp 415–428

    Chapter  Google Scholar 

  • Tai YC, Gray JMNT, Hutter K (2001) Dense granular avalanches: mathematical description and experimental validation. In: Balmforth NL, Provenzale A (eds) Geomorphological fluid mechanics, lecture notes in physics, vol 582. Springer, Berlin, pp 339–366

    Chapter  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni R (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Sys Sci 5:763–775

    Article  Google Scholar 

  • Tinti S, Maramai A, Armigiliato A, Graziani L, Manucci A, Pagnoni G, Zanoboni F (2006) Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, Southern Italy. Bull Volcanol 68:450–461

    Article  Google Scholar 

  • Urgeles R, Locat J, Lee HJ, Martin F (2002) The Saguenay Fjord, Quebec, Canada: integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment. Mar Geol 185:319–340

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements type and processes, TRB, National Research Council, Washington, D.C, vol. 176 of Landslides analysis and control, 11–33

  • Voight B, Glicken H, Janda R, Douglass P (1981) Catastrophic rockslide avalanche of may 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, vol 1250. U.S. Geologial Survey Professional Paper, Washington, DC, pp 347–378

    Google Scholar 

  • Voight B, Janda R, Douglass P (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunamis generated by subaerial mass flows. J Geophys Res 108(B5):2236

    Article  Google Scholar 

  • Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152

    Article  Google Scholar 

  • Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the megatsunami runup in Lituya Bay after half a century. Geophys Res Lett 36:L09602

    Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12

    Article  Google Scholar 

  • Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital piv recordings. Exp Fluids 231:20–28

    Article  Google Scholar 

  • Wieland M, Gray JMNT, Hutter K (1999) Channelized free surface flow of cohesionless granular avalanche in a chute with shallow lateral curvature. J Fluid Mech 293:73–100

    Article  Google Scholar 

  • Xenakis AM, Lind SJ, Stansby PK, Rogers BD (2017) Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proc R Soc A 473(2199):20160674. https://doi.org/10.1098/rspa.2016.0674

    Article  Google Scholar 

  • Yavari-Ramshe S, Ataie-Ashtiani B (2017) A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides 14:203–222. https://doi.org/10.1007/s10346-015-0662-6

    Article  Google Scholar 

  • Zweifel A, Hager WH, Minor H-E (2006) Plane impulse waves in reservoirs. J Waterw Port Coast Ocean Eng 132:358–368. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:5(358)

    Article  Google Scholar 

Download references

Acknowledgements

The data from this study may be obtained at data depot of the DesignSafe-CI website at www.designsafe-ci.org.

Funding

This work was supported by the National Science Foundation (NSF), Division of Civil, Mechanical and Manufacturing Innovation awards: CMMI-0421090, CMMI-0936603, CMMI-0402490, CMMI-0927178, and CMMI-1563217; the U.S. Department of Defense (DoD) through the Science, Mathematics and Research for Transformation (SMART) fellowship; and the U.S. Army Corps of Engineers through the Coastal Inlet Research Program (CIRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. McFall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFall, B.C., Mohammed, F., Fritz, H.M. et al. Laboratory experiments on three-dimensional deformable granular landslides on planar and conical slopes. Landslides 15, 1713–1730 (2018). https://doi.org/10.1007/s10346-018-0984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0984-2

Keywords

Navigation