Skip to main content

Advertisement

Log in

Impact of Cyanobacterial Associate and Heterotrophic Bacteria on Dissolved Organic Carbon and Metal in Moss and Peat Leachate: Application to Permafrost Thaw in Aquatic Environments

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

In the boreal and subarctic zone, the moss and peat interactions with rainwater and snowmelt water in shallow surface ponds control the delivery of dissolved organic matter (DOM) and metal to the rivers and further to the Arctic Ocean. The transformation of peat and moss leachate by common aquatic microorganisms and the effect of temperature on DOM mineralization by heterotrophs remain poorly known that does not allow predicting the response of boreal aquatic system to ongoing climate change. We used experimental approach to quantify the impact of boreal aquatic bacteria P. reactans, and two culturable bacteria extracted from a thaw lake of the permafrost zone (Bolshezemelskaya tundra, NE Europe): Iodobacter sp. and cyanobacterial associate dominated by order Chroococcales (Synechococcus sp). The interaction of these bacterial cultures with nutrient-free peat and moss leachate was performed in order to (1) quantify the impact of temperature (4, 25 and 45 °C) on peat leachate processing by heterotrophs; (2) compare the effect of heterotrophic bacteria and cyanobacterial associate on moss and peat leachate chemical composition, and (3) quantify the DOC and metal concentration change during cyanobacterial growth on leachate from frozen and thawed peat horizon and moss biomass. The efficiency of peat DOM processing by two heterotrophs was not modified by temperature rise from 4 to 45 °C. The DOC concentration decreased by a factor of 1.6 during 3 days of moss leachate reaction with Iodobacters sp. or cyanobacterial associate at 25 °C. The SUVA245 increased twofold suggesting an uptake of non-aromatic DOM by both microorganisms. The growth of cyanobacteria was absent on peat leachate but highly pronounced on moss leachate. This growth produced tenfold decrease in P concentration, a factor of 1.5–2.0 decrease in DOC, a factor of 4 and 100 decrease in Fe and Mn concentration, respectively. Adsorption of organic and organo-mineral colloids on bacterial cell surface was more important factor of element removal from organic leachates compared to intracellular assimilation and/or Fe oxyhydroxide precipitation. Overall, we demonstrate highly conservative behavior of peat leachate compared to moss leachate in the presence of culturable aquatic bacteria, a lack of any impact of heterotrophs on peat leachate and their weak impact on moss leachate. A very weak temperature impact on DOM processing by heterotrophs and lack of difference in the biodegradability of DOM from thawed and frozen peat horizons contradict the current paradigm that the warming of frozen OM and its leaching to inland waters will greatly affect microbial production and C cycle. Strong decrease in concentration of P, Fe and Mn in the moss leachate in the presence of cyanobacterial associate has straightforward application for understanding the development of thermokarst lakes and suggests that, in addition to P, Fe and Mn may become limiting micronutrients for phytoplankton bloom in thermokarst lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott BW, Larouche JR, Jones JB Jr, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res Biogeo 119:2049–2063

    Article  Google Scholar 

  • Abbott BW, Jones JB, Schuur EA, Chapin III FS, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ Res Lett 11:034014. https://doi.org/10.1088/1748-9326/11/3/034014

    Article  Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80(7):2170–2181

    Article  Google Scholar 

  • Agren A, Berggren M, Laudon H, Jansson M (2008) Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–972

    Article  Google Scholar 

  • Allgaier M, Riebesell U, Vogt M, Thyrhaug R, Grossart HP (2008) Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study. Biogeosciences 5:1007–1022

    Article  Google Scholar 

  • Asmala E, Autio R, Kaartokallio H, Stedmon CA, Thomas DN (2014) Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of photodegradation and inorganic nutrients. Aquat Sci 76(3):451–463

    Article  Google Scholar 

  • Baalousha M, Kammer FVD, Motelica-Heino M, Baborowski M, Hofmeister C, Le Coustumer P (2006) Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction. Environ Sci Technol 40(7):2156–2162

    Article  Google Scholar 

  • Barker AJ, Douglas TA, Jacobson AD, McClelland JW, Ilgen AG, Knosh MS, Lehn GO, Trainor TP (2014) Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chem Geol 381:180–193

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  Google Scholar 

  • Benedetti M, Milne C, Kinniburgh D, van Riemsdijk W, Koopal L (1995) Metal ion binding to humic substances: application of the non ideal competitive adsorption model. Environ Sci Technol 29:446–457

    Article  Google Scholar 

  • Berggren M, Laudon H, Jansson M (2007) Landscape regulation of bacterial growth efficiency in boreal freshwaters. Glob Biogeochem Cycles 21:GB4002. https://doi.org/10.1029/2006GB002844

    Article  Google Scholar 

  • Berggren M, Laudon H, Haei M, Ström L, Jansson M (2010a) Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J 4:408–416

    Article  Google Scholar 

  • Berggren M, Laudon H, Jonsson A, Jansson M (2010b) Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microbial Ecol 60:894–902

    Article  Google Scholar 

  • Berggren M, Lapierre JF, del Giorgio PA (2012) Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J 6:984–993

    Article  Google Scholar 

  • Boddy E, Roberts P, Hill PW, Farrar J, Jones DL (2008) Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol Biochem 40:1557–1566

    Article  Google Scholar 

  • Bonnaventure PP, Lamoureux SF (2013) The active layer: a conceptual review of monitoring, modelling techniques and changes in a warming climate. Prog Phys Geogr 37:352–376

    Article  Google Scholar 

  • Bonneville S, Behrends T, Van Cappellen P, Hiacinthe C, Roling WFM (2006) Reduction of Fe(III) colloids by Shewanella putrefaciens: a kinetic model. Geochim Cosmochim Acta 70:5842–5854

    Article  Google Scholar 

  • Bundeleva IA, Shirokova LS, Pokrovsky OS, Bénézeth P, Menez B, Gérard E, Balor S (2014) Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chem Geol 374–375:44–60

    Article  Google Scholar 

  • Čapek P, Diakova K, Dickopp JE, Barta J, Wild B, Schnecker J et al (2015) The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol Biochem 90:19–29

    Article  Google Scholar 

  • Chupakov AV, Ershova A, Moreva OY, Shirokova LS, Zabelina SA, Vorobieva TY, Klimov SI (2017) Allochthonous and autochthonous carbon in deep organic-rich and organic-poor lakes of the European Russian subarctic. Boreal Environ Res 22:213–230

    Google Scholar 

  • Dahlqvist R, Andersson K, Ingri J, Larsson T, Stolpe B, Turner D (2007) Temporal variations of colloidal carrier phases and associated trace elements in a boreal river. Geochim Cosmochim Acta 71:5339–5354

    Article  Google Scholar 

  • del Giorgio PA, Peters RH (1994) Pattern in planktonic P: R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–787

    Article  Google Scholar 

  • Dia A, Gruau G, Olivié-Lauquet G, Riou C, Molénat J, Curmi P (2000) The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochim Cosmochim Acta 64(24):4131–4151

    Article  Google Scholar 

  • Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci 112:13946–13951

    Article  Google Scholar 

  • Drozdova OY, Pokrovsky OS, Lapitskiy SA, Shirokova LS, Gonzalez AG, Demin VV (2014) Decrease in Zn adsorption on soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens. J Colloid Interface Sci 435:59–66

    Article  Google Scholar 

  • Drozdova OY, Shirokova LS, Carrein A, Lapitskiy SA, Pokrovsky OS (2015) Impact of heterotrophic bacterium Pseudomonas aureofaciens on the release of major and trace elements from podzol soil into aqueous solution. Chem Geol 410:174–187

    Article  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol 12:2336–2351

    Article  Google Scholar 

  • Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6(12):1228–1243

    Article  Google Scholar 

  • Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biol Biochem 87:78–89

    Article  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  Google Scholar 

  • Fritzsche A, Bosch J, Rennert T, Heister K, Braunschweig J, Meckenstock RU, Totsche KU (2012) Fast microbial reduction of ferrihydrite colloids from a soil effluent. Geochim Cosmochim Acta 77:444–456

    Article  Google Scholar 

  • Fritzsche A, Schröder C, Wieczorek AK, Händel M, Ritschel T, Totsche KU (2015) Structure and composition of Fe–OM co-precipitates that form in soil-derived solutions. Geochim Cosmochim Acta 169:167–183

    Article  Google Scholar 

  • Gonzalez A, Shirokova LS, Pokrovsky OS, Emnova EE, Santana-Casiano JM, Gonzalez-Davila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J Colloid Interface Sci 350:305–314

    Article  Google Scholar 

  • Gustafsson J (2011) Visual MINTEQ ver. 3.0. http://www2.lwr.kth.se/English/OurSoftware/Vminteq/

  • Haukka K, Heikkinen E, Kairesalo T, Karjalainen H, Sivonen K (2005) Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ Microbiol 7(5):620–630. https://doi.org/10.1111/j.1462-2920.2004.00724.x

    Article  Google Scholar 

  • Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:L03402. https://doi.org/10.1029/2007GL032837

    Article  Google Scholar 

  • Hulatt CJ, Kaartokallio H, Asmala E, Autio R, Stedmon CA, Sonninen E, Oinonen M, Thomas DN (2014) Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change. Aquat Sci 76(3):393–404

    Article  Google Scholar 

  • Ilina SM, Drozdova OY, Lapitsky SA, Alekhin YV, Demin VV, Zavgorodnaya YA, Shirokova LS, Viers J, Pokrovsky OS (2014) Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal lake of a boreal watershed. Org Geochem 66:14–24

    Article  Google Scholar 

  • Ilina SM, Lapitsky SA, Alekhin YV, Viers J, Benedetti M, Pokrovsky OS (2016) Speciation, size fractionation and transport of trace element in the continuum soil water–mire–lake– river–large oligotrophic lake of a high-latitude boreal and Arctic watershed. Aquat Geochem 22(1):65–95

    Article  Google Scholar 

  • Jansson M, Hickler T, Jonsson A, Karlsson J (2008) Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–376

    Article  Google Scholar 

  • Jones SE, Newton RJ, McMahon KD (2009) Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol 11(9):2463–2472

    Article  Google Scholar 

  • Kokelj SV, Lacelle D, Lantz TC, Tunnicliffe J, Malone L, Clark ID, Chin KS (2013) Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J Geophys Res Earth Sci 118:681–692

    Article  Google Scholar 

  • Krachler R, von der Kammer F, Jirsa F, Süphandag A, Krachler RF, Plessl C, Vogt M, Keppler BK, Hofmann T (2012) Nanoscale lignin particles as sources of dissolved iron to the ocean. Glob Biogeochem Cycles 26:GB3024

    Article  Google Scholar 

  • Larouche JR, Abbott BW, Bowden WB, Jones JB (2015) The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences 12:4221–4233

    Article  Google Scholar 

  • Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133

    Article  Google Scholar 

  • Lofts S, Tipping E, Hamilton-Taylor J (2008) The chemical speciation of Fe(III) in freshwaters. Aquat Geochem 14:337–358

    Article  Google Scholar 

  • Logue JB, Stedmon CA, Kellerman AM, Nielsen NJ, Andersson AF, Laudon H, Lindström ES, Kritzberg ES (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10(3):533–545. https://doi.org/10.1038/ismej.2015.131

    Article  Google Scholar 

  • Loiko SV, Pokrovsky OS, Raudina T, Lim A, Kolesnichenko LG, Shirokova LS, Vorobyev SN, Kirpotin SN (2017) Abrupt permafrost collapse enhances organic carbon, CO2, nutrient, and metal release into surface waters. Chem Geol 471:153–165

    Article  Google Scholar 

  • Luengen AC, Raimondi PT, Flegal AR (2007) Contrasting biogeochemistry of six trace metals during the rise and decay of a spring phytoplankton bloom in San Francisco Bay. Limnol Oceanogr 52:1112–1130

    Article  Google Scholar 

  • Lundin EJ, Giesler R, Persson A, Thompson MS, Karlsson J (2013) Integrating carbon emissions from lakes and streams in a subarctic catchment. J Geophys Res Biogeosci 118:1–8. https://doi.org/10.1002/jgrg.20092

    Article  Google Scholar 

  • Lundin EJ, Klaminder J, Bastviken D, Olid C, Hansson SV, Karlsson J (2015) Large difference in carbon emission–burial balances between boreal and arctic lakes. Sci Rep. https://doi.org/10.1038/srep14248

    Google Scholar 

  • Lyvén B, Hassellöv M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67:3791–3802

    Article  Google Scholar 

  • Manasypov RM, Shirokova LS, Pokrovsky OS (2017) Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: role of peat and lichen leaching and ground fire. Sci Total Environ 580:245–257

    Article  Google Scholar 

  • Mann PJ, Sobczak WV, LaRue MM, Bulygina E, Davydova A, Vonk JE, Schade J, Davydov S, Zimov N, Holmes RM, Spencer RGM (2014) Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob Change Biol 20(4):1089–1100

    Article  Google Scholar 

  • Mann PJ, Eglinton TI, McIntyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RGM (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun. https://doi.org/10.1038/ncomms8856

    Google Scholar 

  • Mikutta C, Mikutta R, Bonneville S, Wagner F, Voegelin A, Christl I, Kretzschmar R (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: characterization. Geochim Cosmochim Acta 72:1111–1127

    Article  Google Scholar 

  • Milne CJ, Kinniburgh DG, van Riemsdijk WH, Tipping E (2003) Generic NICA-donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37(5):958–971

    Article  Google Scholar 

  • Morgalev YN, Lushchaeva IV, Morgaleva TG, Kolesnichenko LG, Loiko SV, Krickov IV, Lim A, Raudina TV, Volkova II, Shirokova LS, Morgalev SY, Vorobyev SN, Kirpotin SN, Porkrovsky OS (2017) Bacteria primarily metabolize at the active layer/permafrost boundary in the peat core from a permafrost region in western Siberia. Polar Biol 40(8):1645–1659

    Article  Google Scholar 

  • Neubauer E, von der Kammer F, Knorr KH, Peiffer S, Reichert M, Hofmann T (2013) Colloid-associated export of arsenic in stream water during stormflow events. Chem Geol 352:81–91

    Article  Google Scholar 

  • Nguyen HV, Hur J (2011) Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere 85:782–789

    Article  Google Scholar 

  • Oleinikova O, Shirokova LS, Drozdova OY, Gerard E, Lapitsky SA, Bychkov AY, Pokrovsky OS (2017) Transformation of organo-ferric colloids by heterotrophic bacterium Pseudomonas saponiphila. Geochim Cosmochim Acta 205:313–330

    Article  Google Scholar 

  • Painter TJ (1991) Lindow Man, Tollund Man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronglycan with tanning and sequestering properties. Carbohydr Polym 15:123–142

    Article  Google Scholar 

  • Pédrot M, Dia A, Davranche M (2009) Double pH control on humic substance-borne trace elements distribution in soil waters as inferred from ultrafiltration. J Colloid Interface Sci 339:390–403

    Article  Google Scholar 

  • Pelletier L, Strachan IB, Roulet NT, Garneau M (2015a) Can boreal peatlands with pools be net sinks for CO2? Environ Res Lett 10:035002. https://doi.org/10.1088/1748-9326/10/3/035002

    Article  Google Scholar 

  • Pelletier L, Strachan IB, Roulet NT, Garneau M, Wischnewski K (2015b) Effect of open water pools on ecosystem scale surface-atmosphere carbon dioxide exchange in a boreal peatland. Biogeochemistry 124:291–304

    Article  Google Scholar 

  • Pokrovsky OS, Schott J (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem Geol 190:141–179

    Article  Google Scholar 

  • Pokrovsky OS, Shirokova LS (2013) Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. Water Res 47(2):922–932

    Article  Google Scholar 

  • Pokrovsky OS, Martinez R, Golubev SV, Kompantzeva EI, Shirokova LS (2008) Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation approach. Appl Geochem 23:2574–2588

    Article  Google Scholar 

  • Pokrovsky OS, Martinez R, Kompantzeva EI, Shirokova LS (2013) Interaction of metals and protons with anoxygenic phototrophic bacterium Rhodobacter blasticus. Chem Geol 335:75–86

    Article  Google Scholar 

  • Pokrovsky OS, Manasypov RM, Loiko SV, Shirokova LS (2016) Organic and organo-mineral colloids of discontinuous permafrost zone. Geochim Cosmochim Acta 188:1–20

    Article  Google Scholar 

  • Rivkina E, Laurinavichuis K, McGrath J, Tiedje JM, Shcherbakova V, Gilichinsky DA (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  Google Scholar 

  • Roehm CL, Giesler R, Karlsson J (2009) Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading subarctic permafrost mire complex. J Geophys Res 114:G03006. https://doi.org/10.1029/2008JG000863

    Article  Google Scholar 

  • Schadel C, Bader MKF, Schuur E et al (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Change 6(10):950. https://doi.org/10.1038/NCLIMATE3054

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Viers J, Klimov SI, Moreva OY, Zabelina SA, Vorobieva TY, Dupré B (2010) Diurnal variations of trace elements and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin. Ann Limnol Int J Limnol 46:67–75

    Article  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Bénézeth P, Gérard E, Ménez B, Alfredsson HA (2012) Experimental study of the effect of heterotrophic bacterium (Pseudomonas reactans) on olivine dissolution kinetics in the context of CO2 storage in basalts. Geochim Cosmochim Acta 80:30–50

    Article  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Kirpotin SN, Desmukh C, Pokrovsky BG, Audry S, Viers J (2013) Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry 113:573–593

    Article  Google Scholar 

  • Shirokova LS, Kunhel L, Rols JL, Pokrovsky OS (2015) Experimental modeling of cyanobacterial bloom in a thermokarst lake. Aquat Geochem 21(6):487–511

    Article  Google Scholar 

  • Shirokova LS, Ivanova IS, Iglovsky SA, Gofarov MY, Manasypov RM, Zabelina SA, Gerard E, Lecourt L, Pokrovsky OS (2016a) Biogeochemistry of carbon cycle in aquatic ecosystems of Bolshezemelskaya tundra: experimental approach and field studies. In: Materials of the V international science conference, Sept 12–17, 2016, Minsk–Naroch, pp 116–117

  • Shirokova LS, Ivanova IS, Iglovsky SA, Gofarov MY, Pokrovsky OS, Shorina NV, Zabelina SA, Kovalev OD, Manasypov RM, Chupakov AV, Ershova AA (2016b) Multidisciplinary studies of small thermokarst lakes, NW Russia. In: Proceedings of the second international science conference on “natural resources and integrated development of Coastal Areas in the Arctic Zone”, Arkhangelsk, 2016, pp 498–504

  • Shirokova LS, Bredoire R, Rols JL, Pokrovsky OS (2017) Moss and peat leachate degradability by heterotrophic bacteria: the fate of organic carbon and trace metals. Geomicrobiol J 34(8):641–655

    Article  Google Scholar 

  • Spencer RGM, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins A (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42:2830–2835

    Article  Google Scholar 

  • Srinivas TN, Manasa P, Begum Z, Sunil B, Sailaja B, Singh SK, Prasad S, Shivaji S (2013) Iodobacter arcticus sp. nov., a psychrotolerant bacterium isolated from meltwater stream sediment of an Arctic glacier. Int J Syst Evol Microbiol 63(Pt 8):2800–2805

    Article  Google Scholar 

  • Stolpe B, Guo L, Shiller AM, Aiken GR (2013) Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS. Geochim Cosmochim Acta 105:221–239

    Article  Google Scholar 

  • Stumm W (1992) Chemistry of the solid–water interface. Wiley, New York, p 428

    Google Scholar 

  • Su W, Zhou Z, Jiang F, Chang X, Liu Y, Wang S, Kan W, Xiao M, Shao M, Peng F, Fang C (2013) Iodobacter limnosediminis sp. nov., isolated from Arctic lake sediment. Int J Syst Evol Microbiol 63(Pt 4):1464–1470

    Article  Google Scholar 

  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A (2015) Acceleration of cyanobacterial dominance in north temperate subarctic lakes during the Anthropocene. Ecol Lett 18(4):375–384

    Article  Google Scholar 

  • Tranvik LJ (1998) Degradation of dissolved organic matter in humic waters by bacteria. In: Tranvik LJ, Hessen DO (eds) Aquatic humic substances: ecology and biogeochemistry. Springer, Berlin, pp 259–283

    Chapter  Google Scholar 

  • Tripathi BN, Kasana R, Singh V, Bhatt I, Singh A, Sharma V, Gaur JP (2009) Carotenoids and pH of the culture medium play an important role in displaying metal stress in batch and semi-continuous cultures of Anabaena doliolum. Ann Limnol Int J Limnol 45(2):119–125

    Article  Google Scholar 

  • Uyguner C, Bekbolet M (2005) Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination 176:47–55

    Article  Google Scholar 

  • Vähätalo AV, Wetzel RG (2008) Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of C-13:C-12 mass ratio. Limnol Oceanogr 53(4):1387–1392

    Article  Google Scholar 

  • Vähätalo AV, Salonen K, Munster U, Jarvinen M, Wetzel RG (2003) Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Arch Hydrobiol 156(3):287–314

    Article  Google Scholar 

  • Van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundstrom US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Article  Google Scholar 

  • Vasyukova E, Pokrovsky OS, Viers J, Oliva P, Dupré B, Martin F, Candaudap F (2010) Trace elements in organic- and iron-rich surficial fluids of boreal zone: assessing colloidal forms via dialysis and ultrafiltration. Geochim Cosmochim Acta 74:449–468

    Article  Google Scholar 

  • Vasyukova E, Pokrovsky OS, Viers J, Dupré B (2012) New operational method of testing colloid complexation with metals in natural waters. Appl Geochem 27:1226–1237

    Article  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15(6):785–790

    Article  Google Scholar 

  • Vonk JE, Mann PJ, Dowdy KL, Davydova A, Davydov SP, Zimov N, Spencer RGM, Bulygina EB, Eglinton TI, Holmes RM (2013) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett. https://doi.org/10.1088/1748-9326/8/3/035023

    Google Scholar 

  • Vonk JE, Tank SE, Mann PJ, Spencer RGM, Treat CC, Striegl RG, Abbott BW, Wickland KP (2015) Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. Biogeosciences 12:6915–6930

    Article  Google Scholar 

  • Wang WX, Guo L (2001) Production of colloidal organic carbon and trace metals by phytoplankton decomposition. Limnol Oceanogr 46(2):278–286

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  Google Scholar 

  • Wilkinson GM, Pace ML, Cole JJ (2013) Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochem Cycles 27:43–51

    Article  Google Scholar 

  • Xiao YH, Raike A, Hartikainen H, Vähätalo AV (2015) Iron as a source of color in river waters. Sci Total Environ 536:914–923

    Article  Google Scholar 

  • Xiao YH, Hoikkala L, Kasurinen V, Tiirola M, Kortelainen P, Vähätalo AV (2016) The effect of iron on the biodegradation of natural dissolved organic matter. J Geophys Res Biogeosci 121:2544–2561

    Article  Google Scholar 

  • Yeghicheyan D, Bossy C, Bouhnik Le Coz M, Douchet C, Granier G, Heimburger A, Lacan F, Lanzanova A, Rousseau TCC, Seidel JL, Tharaud M, Candaudap F, Chmeleff J, Cloquet C, Delpoux S, Labatut M, Losno R, Pradoux C, Sivryn Y, Sonke JE (2014) A compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC). Geostand Geoanal Res 37:449–467

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from a RSCF (RNF) Grant No. 15-17-10009 (Evolution of thermokarst lake ecosystem in the context of climate change). Irina Volkova is thanked for botanical description of peat and moss, and Oxana Pavlova performed phytoplankton characterization in thermokarst lake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg S. Pokrovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokova, L.S., Labouret, J., Gurge, M. et al. Impact of Cyanobacterial Associate and Heterotrophic Bacteria on Dissolved Organic Carbon and Metal in Moss and Peat Leachate: Application to Permafrost Thaw in Aquatic Environments. Aquat Geochem 23, 331–358 (2017). https://doi.org/10.1007/s10498-017-9325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-017-9325-7

Keywords

Navigation