Skip to main content
Log in

Hierarchical structure of bivalve culture systems and optimal stocking density

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Bivalve culture systems are hierarchical, with culture units being nested within culture gear, which are nested within farms, and so on. The possibility that processes acting at the scale of individual culture units may interact with high-level processes has been overlooked in carrying capacity models, although basin-scale patterns are generated at the scale of culture units. Here I study the effect of increasing basin-scale loading on unit-scale optimal stocking density (OSD). I find a curvilinear relationship, with OSD decreasing with basin-scale loading. Clearly basin-scale models should incorporate culture-unit effects. This may be achieved by using experimental studies of the clearance rate of whole culture units to complement estimates of ecophysiological processes of individuals. Such culture-unit information, along with knowledge of associated local phytoplankton depletion at various current speeds and culture-unit stocking levels, may be used to generate submodels to be included in basin-scale models. To facilitate experimental testing of across-scale effects, I develop a simple food-regulated growth model combining density dependence at the scale of individual culture units and at the scale of basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OSD:

Culture unit optimal stocking density

BN curve:

Biomass-density curve

N* model:

Body size-density model with hierarchical effect of number of culture units only

mN model:

Body size-density model

mNN* model:

Body size-density model with hierarchical effect of body size, culture unit population density and number of culture units combined

RMS:

Residual mean square

PEI:

Prince Edward Island

References

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Alunno-Bruscia M, Petraitis PS, Bourget E, Fréchette M (2000) Body size-density relationships for Mytilus edulis in an experimental food-regulated situation. Oikos 90:28–42. doi:10.1034/j.1600-0706.2000.900104.x

    Article  Google Scholar 

  • Bacher C (1989) Capacité trophique du bassin de Marennes-Oléron: couplage d’un modèle de transport particulaire et d’un modèle de croissance de l’huître Crassostrea gigas. Aquat Living Resour 2:199–214. doi:10.1051/alr:1989025

    Article  Google Scholar 

  • Bacher C, Grant J, Hawkins AJS, Fang J, Zhu M, Besnard M (2003) Modelling the effect of food depletion on scallop growth in Sungo Bay (China). Aquat Living Resour 16:10–24. doi:10.1016/S0990-7440(03)00003-2

    Article  Google Scholar 

  • Barnes B, Roderick ML (2004) An ecological framework linking scales across space and time based on self-thinning. Theor Popul Biol 66:113–128. doi:10.1016/j.tpb.2004.04.004

    Article  PubMed  Google Scholar 

  • Bayne BL, Widdows J (1978) The physiological ecology of two populations of Mytilus edulis L. Oecologia 37:137–162. doi:10.1007/BF00344987

    Article  Google Scholar 

  • Beadman HA, Willows RI, Kaiser MJ (2002) Potential applications of mussel modeling. Helgol Mar Res 56:76–85. doi:10.1007/s10152-001-0092-9

    Article  Google Scholar 

  • Beal BF, Kraus MG (2002) Interactive effects of initial size, stocking density, and type of predator deterrent netting on survival and growth of cultured juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine. Aquaculture 208:81–111. doi:10.1016/S0044-8486(01)00900-0

    Article  Google Scholar 

  • Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204. doi:10.1007/BF00384283

    Article  Google Scholar 

  • Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989

    Article  Google Scholar 

  • Boyd AJ, Heasman KG (1998) Shellfish mariculture in the Benguela system: water flow patterns within a mussel farm in Saldanha Bay, South Africa. J Shellfish Res 17:25–32

    Google Scholar 

  • Butman CA, Fréchette M, Geyer WR, Starczak VR (1994) Flume experiments on food supply to the blue mussel Mytilus edulis L. as a function of boundary-layer flow. Limnol Oceanogr 39:1755–1768

    Google Scholar 

  • Claereboudt MR, Bureau D, Côté J, Himmelman JH (1994a) Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture. Aquaculture 121:327–342. doi:10.1016/0044-8486(94)90268-2

    Article  Google Scholar 

  • Claereboudt MR, Himmelman JH, Côté J (1994b) Field evaluation of the effect of current velocity and direction on the growth of the giant scallop, Placopecten magellanicus, in suspended culture. J Exp Mar Biol Ecol 183:27–39. doi:10.1016/0022-0981(94)90154-6

    Article  Google Scholar 

  • Côté J, Himmelman JH, Claereboudt M, Bonardelli JC (1993) Influence of density and depth on the growth of juvenile sea scallops (Placopecten magellanicus) in suspended culture. Can J Fish Aquat Sci 50:1857–1869

    Article  Google Scholar 

  • Dolmer P (2000) Algal concentration profiles above mussel beds. J Sea Res 43:113–119. doi:10.1016/S1385-1101(00)00005-8

    Article  Google Scholar 

  • Dowd M (1997) On predicting the growth of cultured bivalves. Ecol Modell 104:113–131. doi:10.1016/S0304-3800(97)00133-6

    Article  Google Scholar 

  • Dowd M (2003) Seston dynamics in a tidal inlet with shellfish aquaculture: a model study using tracer equations. Estuar Coast Shelf Sci 57:523–537. doi:10.1016/S0272-7714(02)00397-9

    Article  Google Scholar 

  • Drapeau A, Comeau LA, Landry T, Stryhn H, Davidson J (2006) Association between long-line design and mussel productivity in Prince Edward Island, Canada. Aquaculture 261:879–889. doi:10.1016/j.aquaculture.2006.07.045

    Article  Google Scholar 

  • Duarte P, Labarta U, Fernández-Reiriz MJ (2008) Modelling local food depletion effects in mussel rafts of Galician Rias. Aquaculture 274:300–312. doi:10.1016/j.aquaculture.2007.11.025

    Article  Google Scholar 

  • Farazdaghi H, Harris PM (1968) Plant competition and crop yield. Nature 217:289–290. doi:10.1038/217289a0

    Article  Google Scholar 

  • Ferreira JG, Hawkins AJS, Bricker SB (2007) Management of productivity, environmental effects, and profitability of shellfish aquaculture—the farm aquaculture resource management (FARM) model. Aquaculture 264:160–174. doi:10.1016/j.aquaculture.2006.12.017

    Article  Google Scholar 

  • Ferreira JG, Hawkins AJS, Monteiro P, Moore H, Service M, Pascoe PL et al (2008) Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 275:138–151. doi:10.1016/j.aquaculture.2007.12.018

    Article  Google Scholar 

  • Fréchette M (2005) A comment on the methodology of stocking experiments. Aquaculture 250:291–299. doi:10.1016/j.aquaculture.2005.05.004

    Article  Google Scholar 

  • Fréchette M, Bacher C (1998) A modelling study of optimal stocking density of mussel populations kept in experimental tanks. J Exp Mar Biol Ecol 219:241–255. doi:10.1016/S0022-0981(97)00183-4

    Article  Google Scholar 

  • Fréchette M, Bourget E (1985) Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can J Fish Aquat Sci 42:1158–1165

    Article  Google Scholar 

  • Fréchette M, Lefaivre D (1990) Discriminating between food and space limitation in benthic suspension feeders using self-thinning relationships. Mar Ecol Prog Ser 65:15–23. doi:10.3354/meps065015

    Article  Google Scholar 

  • Fréchette M, Bergeron P, Gagnon P (1996) On the use of self-thinning relationships in stocking experiments. Aquaculture 145:91–112. doi:10.1016/S0044-8486(96)01349-X

    Article  Google Scholar 

  • Fréchette M, Gaudet M, Vigneau S (2000) Estimating optimal population density for intermediate culture of scallops in spat collector bags. Aquaculture 183:105–124. doi:10.1016/S0044-8486(99)00285-9

    Article  Google Scholar 

  • Fréchette M, Alunno-Bruscia M, Dumais J-F, Daigle G, Sirois R (2005) Incompleteness and statistical uncertainty in competition/stocking experiments. Aquaculture 246:209–225. doi:10.1016/j.aquaculture.2005.01.015

    Article  Google Scholar 

  • Fuentes J, Gregorio V, Giráldez R, Molares J (2000) Within-raft variability of the growth rate of mussels, Mytilus galloprovincialis, cultivated in the Ría de Arousa (NW Spain). Aquaculture 189:39–52. doi:10.1016/S0044-8486(00)00357-4

    Article  Google Scholar 

  • Gangnery A, Bacher C, Buestel D (2004) Modelling oyster population dynamics in a Mediterranean coastal lagoon (Thau, France): sensitivity of marketable production to environmental conditions. Aquaculture 230:323–347. doi:10.1016/S0044-8486(03)00413-7

    Article  Google Scholar 

  • Gascoigne JC, Beadman HA, Saurel C, Kaiser MJ (2005) Density dependence, spatial scale and patterning in sessile biota. Oecologia 145:371–381. doi:10.1007/s00442-005-0137-x

    Article  PubMed  Google Scholar 

  • Grant J, Bacher C (2001) A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can J Fish Aquat Sci 58:1003–1011. doi:10.1139/cjfas-58-5-1003

    Article  Google Scholar 

  • Grant J, Bugden G, Horne E, Archambault M-C, Carreau M (2007a) Remote sensing of particle depletion by coastal suspension-feeders. Can J Fish Aquat Sci 64:387–390. doi:10.1139/F07-021

    Article  Google Scholar 

  • Grant J, Curran KJ, Guyondet TL, Tita G, Bacher C, Koutitonsky V et al (2007b) A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée, Îles-de-la-Madeleine, Québec. Ecol Modell 200:193–206. doi:10.1016/j.ecolmodel.2006.07.026

    Article  Google Scholar 

  • Guiñez R, Castilla JC (1999) A tridimensional self-thinning model for multilayered intertidal mussels. Am Nat 154:341–357. doi:10.1086/303234

    Article  PubMed  Google Scholar 

  • Hagihara A (1999) Theoretical considerations on the C-D effect in self-thinning plant populations. Res Popul Ecol (Kyoto) 41:151–159

    Google Scholar 

  • Heasman KG, Pitcher GC, McQuaid CD, Hecht T (1998) Shellfish mariculture in the Benguela system: raft culture of Mytilus galloprovincialis and the effect of rope spacing on food extraction, growth rate, production, and condition of mussels. J Shellfish Res 17:33–39

    Google Scholar 

  • Hernandez-Llamas A, Ratkowsky DA (2004) Growth of fishes, crustaceans and molluscs: estimation of the von Bertalanffy, logistic, Gompertz and Richards curves and a new growth model. Mar Ecol Prog Ser 282:237–244. doi:10.3354/meps282237

    Article  Google Scholar 

  • Kikuzawa K (1999) Theoretical relationships between mean plant size, size distribution and self-thinning under one-sided competition. Ann Bot (Lond) 83:11–18. doi:10.1006/anbo.1998.0782

    Article  Google Scholar 

  • Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Lauzon-Guay J-S, Barbeau M, Watmough J, Hamilton DJ (2006) A model for growth and survival of mussels, Mytilus edulis, reared in Prince Edward Island, Canada. Mar Ecol Prog Ser 323:171–182. doi:10.3354/meps323171

    Article  Google Scholar 

  • Lorenzen K (1996) A simple von Bertalanffy model for density-dependent growth in extensive aquaculture, with an application to common carp (Cyprinus carpio). Aquaculture 142:191–205. doi:10.1016/0044-8486(95)01229-X

    Article  Google Scholar 

  • Lunger A, Rasmussen MR, Laursen J, McLean E (2006) Fish stocking density impacts tank hydrodynamics. Aquaculture 254:370–375. doi:10.1016/j.aquaculture.2005.10.023

    Article  Google Scholar 

  • Mallet AL, Carver CE (1991) An assessment of strategies for growing mussels in suspended culture. J Shellfish Res 10:471–477

    Google Scholar 

  • McKindsey CW, Thetmeyer H, Landry T, Silvert W (2006) Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 261:451–462. doi:10.1016/j.aquaculture.2006.06.044

    Article  Google Scholar 

  • Meeuwig JJ, Rasmussen JB, Peters RH (1998) Turbid waters and clarifying mussels: their moderation of empirical chl:nutrient relations in estuaries in Prince Edward Island, Canada. Mar Ecol Prog Ser 171:139–150

    Article  CAS  Google Scholar 

  • Melbourne BA, Chesson P (2006) The scale transition: scaling up population dynamics with field data. Ecology 87:1478–1488. doi:10.1890/0012-9658(2006)87[1478:TSTSUP]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Navarro E, Iglesias JIP, Pérez Camacho A, Labarta U, Beiras R (1991) The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture 94:197–212. doi:10.1016/0044-8486(91)90118-Q

    Article  Google Scholar 

  • Newell CR (1990) The effects of mussel (Mytilus edulis, Linnaeus, 1758) position in seeded bottom patches on growth on subtidal lease sites in Maine. J Shellfish Res 9:113–118

    Google Scholar 

  • O’Riordan CA, Monismith SG, Koseff JR (1993) A study of concentration boundary layer formation over a bed of model bivalves. Limnol Oceanogr 38:1712–1729

    Google Scholar 

  • Parsons JG, Dadswell MJ (1992) Effect of stocking density on growth, production, and survival of the giant scallop, Placopecten magellanicus, held in intermediate culture in Passamaquoddy Bay, New Brunswick. Aquaculture 103:291–309. doi:10.1016/0044-8486(92)90173-I

    Article  Google Scholar 

  • Pfister CA, Stevens FR (2002) The genesis of size variability in plants and animals. Ecology 83:59–72

    Article  Google Scholar 

  • Pilditch CA, Grant J, Bryan KR (2001) Seston supply to sea scallops (Placopecten magellanicus) in suspended culture. Can J Fish Aquat Sci 58:241–253. doi:10.1139/cjfas-58-2-241

    Article  CAS  Google Scholar 

  • Powell EN, Klinck JM, Hofmann EE, Wilson-Ormond EA, Ellis MS (1995) Modeling oyster populations. V. Declining phytoplankton stocks and the population dynamics of American oyster (Crassostrea virginica) populations. Fish Res 24:199–222. doi:10.1016/0165-7836(95)00370-P

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929. doi:10.1126/science.1101867

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Nikora V, Ross A, Wake G (2006) A lattice-Boltzmann-based model of plankton-flow interaction around a mussel cluster. Ecol Modell 192:645–657. doi:10.1016/j.ecolmodel.2005.06.010

    Article  Google Scholar 

  • Strohmeier T, Aure J, Duinker A, Castberg T, Svardal A, Strand Ø (2005) Flow reduction, seston depletion, meat content and distribution of diarrhetic shellfish toxins in a long-line blue mussel (Mytilus edulis) farm. J Shellfish Res 24:15–23

    Google Scholar 

  • Svane I, Ompi M (1993) Patch dynamics in beds of the blue mussel Mytilus edulis L.: effects of site, patch size and position within a patch. Ophelia 37:187–202

    Google Scholar 

  • van de Koppel J, Rietkerk M, Dankers N, Herman PMJ (2005) Scale-dependent feedback and regular spatial patters in young mussel beds. Am Nat 165:E66–E77. doi:10.1086/428362

    Article  PubMed  Google Scholar 

  • van Duren LA, Herman PMJ, Sandee AJJ, Heip CHR (2006) Effects of mussel filtering activity on boundary layer structure. J Sea Res 55:3–14. doi:10.1016/j.seares.2005.08.001

    Article  Google Scholar 

  • van Haren RJF, Kooijman SALM (1993) Application of a dynamic energy budget model to Mytilus edulis (L.). Neth J Sea Res 31:119–133. doi:10.1016/0077-7579(93)90002-A

    Article  Google Scholar 

  • Ventilla RF (1982) The scallop industry in Japan. Adv Mar Biol 20:309–382. doi:10.1016/S0065-2881(08)60142-X

    Article  Google Scholar 

  • Xue L, Hagihara A (1998) Growth analysis of the self-thinning stands of Pinus densiflora Sieb. et Zucc. Ecol Res 13:183–191. doi:10.1046/j.1440-1703.1998.00256.x

    Article  Google Scholar 

Download references

Acknowledgments

G. Daigle (Université Laval, Québec) provided the methods used in Appendix B. I thank J.-F. Dumais, D. Lefaivre, and C.W. McKindsey for stimulating discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Fréchette.

Appendices

Appendix A: List of model parameters and variables of the simulation model

Parameter

Symbol

Value

Units

Source

Volume of hypothetical reservoirs

V

100

l

 

Water flow rate in the hypothetical reservoirs

ν

864

l day−1

 

Volume of basin

V *

1,000

l

 

Water flow rate in the basin

ν *

4,320

l day−1

 

Water temperature

T

14.0

°C

Alunno-Bruscia et al. (2000)

Phytoplankton energy density entering the basin

ρ *

10.4

J l−1

 

Phytoplankton energy density entering the hypothetical reservoirs and exiting the basin

ρ in

 

J l−1

 

Phytoplankton energy density exiting the hypothetical reservoirs

ρ

 

J l−1

 

Initial mussel soft tissue mass

m 0

0.029

g

 

Filtering coefficient

a f

50.88

l day−1

Fréchette and Bacher (1998)

Filtering exponent

λ

0.408

 

Fréchette and Bacher (1998)

Assimilation efficiency

e a

0.85

 

Fréchette and Bacher (1998)

Respiration exponent for mass

β

0.844

 

Fréchette and Bacher (1998)

Respiration exponent for temperature

γ

1.358

 

Fréchette and Bacher (1998)

Respiration coefficient

a r

13.584

J day−1

Fréchette and Bacher (1998)

Population density

N

 

Mussels reservoir−1

 

Number of culture units

N *

 

Units per basin

 

Individual mussel soft tissue mass

m

 

g

 

Appendix B: Estimation of OSD

To estimate OSD, use the derivative of B = q 1 N/(1 + q 2 N q), which is

$$ \partial B/\partial N = \left[ {\frac{{q_1 }}{{1 + q_2 N^q }}} \right] \cdot \left[ {1 - \frac{{qq_2 N^q }}{{1 + q_2 N^q }}} \right] $$
(1A)

and solve Eq. 1A for N 0 with the condition \( \partial B/\partial N = 0.029 \). The solution is

$$ N_0 = \left( {\frac{{q_1 (1 - q) - 0.058 + \sqrt {(q_1 - qq_1 - 0.058)^2 + 0.116(q_1 - 0.029)} }}{{0.058q_2 }}} \right)^{(1/q)}. $$
(2A)

N 0 is an estimate of OSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fréchette, M. Hierarchical structure of bivalve culture systems and optimal stocking density. Aquacult Int 18, 99–114 (2010). https://doi.org/10.1007/s10499-008-9198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-008-9198-2

Keywords

Navigation