Skip to main content
Log in

The effect of clay mineral content on the dynamic response of reconstituted fine grained soil

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Fine grained soils with considerable amount of silt may exhibit sand-like or clay-like behavior depending on several factors such as the amount of fines and clay content, as well as the consistency limits, other variables being kept unchanged. This unpredictable behavior makes silts highly problematic, especially under seismic conditions. This paper describes the laboratory behavior of low plasticity Adapazari silt, known to be highly sensitive to cyclic loading. In the first phase of the basic study reported herein, Adapazari silt was mixed with different percentages of bentonite and kaolin and the behavior of these reconstituted mixtures was investigated in cyclic triaxial and dynamic simple shear tests. The purpose was to identify basic index properties and their threshold values to delineate sand- and clay-like behavior. Such a distinction may make it possible to complement field penetration resistance with appropriate adjustment factors to evaluate the pore pressure development potential, thus the risk of ground failure during an earthquake. The results show that there is a range of liquid limit and plasticity index values above which cyclic failure is significantly mitigated. It can now be stated that silts of intermediate and high plasticity may be deemed of relatively low potential for ground failure during seismic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ASTM D6528 (2007) standard test method for consolidated undrained direct simple shear testing of cohesive soils

  • ASTM D5311 (2011) Standard test method for load controlled cyclic triaxial strength of soil

  • Bol E, Onalp A, Arel E, Sert S, Ozocak A (2010) Liquefaction of silts: the Adapazari criteria. Bull Earthq Eng 8:859–873

    Article  Google Scholar 

  • Boulanger RW, Idriss IM (2004) Evaluating the potential for liquefaction or cyclic failure of silts and clays. Report UCD/CGM 04/01, University of California

  • Boulanger RW, Idriss IM (2006) Liquefaction susceptibility for silts and clays. J Geotech Geoenviron Eng 132(11):1413–1426

    Article  Google Scholar 

  • Boulanger RW, Meyers MW, Mejia LH, Idriss IM (1998) Behavior of a fine-grained soil during the Loma Prieta earthquake. Can Geotech J 35:146–158

    Article  Google Scholar 

  • Bray JD, Sancio RB (2006) Assessment of the liquefaction susceptibility of fine grained soils. J Geotech Geoenviron Eng 132(9):1165–1177

    Article  Google Scholar 

  • Bray JD, Sancio RB, Durgunoglu T, Onalp A, Youd TL, Stewart JP, Seed RB, Cetin KO, Bol E, Baturay MB, Christensen C, Karadayilar T (2004) Subsurface characterization at ground failure sites in Adapazari, Turkey. J Geotech Geoenviron Eng 130(7):673–685

    Article  Google Scholar 

  • BS1377 (1990) Methods of test for soils for civil engineering purposes. British Standards Institution, London

    Google Scholar 

  • Dobry R, Ladd R, Yokel F, Chung R, Powell D (1982) Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. NBS Building Science Series 138. National Bureau of Standards, U.S. Department of Commerce, Washington

    Google Scholar 

  • Donahue JL, Bray JD, Riemer RM (2007) The liquefaction susceptibility, resistance and response of silty and clayey soils. USGS Research Report, Berkeley

    Google Scholar 

  • Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. EERInstitute, California

    Google Scholar 

  • Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415

    Article  Google Scholar 

  • Koester JP (1992) The influence of test procedure on correlation of Atterberg limits with liquefaction in fine-grained soils. Geotech Test J ASTM 15(4):352–360

    Article  Google Scholar 

  • Kramer SL, Huang YM, Greenfield MW (2011) Performance based assessment of liquefaction hazards. In: Proceedings of geotechnics for catastrophic flooding events, Taylor & Francis, London, vol 1, pp 17–26

  • Onalp A, Arel E, Bol E (2001) A general assessment of the effects of 1999 earthquake on the soil-structure interaction in Adapazari. XV ICSMFE-Jubilee Papers in Honour of Prof. Dr. Ergun Togrol, Istanbul

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div ASCE 97(SM9):1249–1273

    Google Scholar 

  • Seed RB, Cetin KO, Moss RES, Kammerer AM, Wu J, Pestana JM, Riemer MF, Sancio RB, Bray JD, Kayen RE, Faris A (2003) Recent advances in soil liquefaction engineering. In: 26th annual, ASCE L. A. geotechnical seminar

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng Div ASCE 117(1):89–107

    Article  Google Scholar 

  • Wang WS (1979) Some findings in soil liquefaction research. Institute of Water Conservancy and Hydroelectric Power, Beijing, PRC

    Google Scholar 

Download references

Acknowledgements

This work was conducted carried out by the support of the Turkish Foundation for Scientific and Technical Research TÜBITAK under project 106M042. The senior author is thankful for the encouragement given by the Virginia Tech during her stay in 2010–2011. Special thanks are due to Professor James. R. Martin for his support during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Arel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arel, E., Önalp, A. & Olgun, G.C. The effect of clay mineral content on the dynamic response of reconstituted fine grained soil. Bull Earthquake Eng 16, 4515–4532 (2018). https://doi.org/10.1007/s10518-018-0360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0360-6

Keywords

Navigation