Skip to main content
Log in

Geophysical and engineering analysis of different earthquake damage in Pescara del Tronto and Vezzano (Arquata del Tronto Municipality) following the 24th August 2016 central Italy earthquake

  • S.I. : The 2016 central Italy Earthquakes
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

After the ML = 6.0 earthquake which occurred on 24th August 2016 in central Italy, some unexpected variability in the damage distribution were identified in many villages located around the epicentral area. In particular, despite a distance of only about 1300 m, the villages of Pescara del Tronto and Vezzano (both districts in the Arquata del Tronto municipality) had a different damage assessment. Pescara del Tronto suffered heavy damage, with many collapsed masonry buildings and 48 fatalities, whereas Vezzano suffered negligible to slight damage to a few buildings. This paper provides vulnerability and damage assessment in order to detect potential significant differences in the building vulnerability and damage level. Geophysical prospectings were performed to assess whether site effects could have increased the damage in Pescara del Tronto compared to Vezzano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Bonnefoy-Claudet S, Cornou C, Bard P-Y, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratios: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837

    Article  Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60:29–61

    Google Scholar 

  • Castro RR, Mucciarelli M, Pacor F, Federici P, Zaninetti A (1998) Determination of the characteristic frequency of two dams located in the region of Calabria, Italy. Bull Seismol Soc Am 88(2):503–511

    Google Scholar 

  • Catalano S, Grassi S, Imposa S, Lombardo G, Panzera F, Romagnoli G, Tortorici G (2016) Geological and geophysical evidence of the Pretare-Piedilama normal fault (Arquata del Tronto, Central Italy). Riassunti del 35° Convegno Nazionale del GNGTS, 22–24 November 2016, Lecce. ISBN: 978-88-940442-7-0

  • Chatelain J-L, Guillier B, Cara F, Duval A-M, Atakan K, Bard P-Y, the WP02 SESAME team (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng. https://doi.org/10.1007/s10518-007-9040-7

    Article  Google Scholar 

  • Chavez-Garcia FJ, Cardenas-Soto M (2002) The contribution of the built environment to the ‘free-field’ ground motion in Mexico City. Soil Dyn Earthq Eng 22:773–780

    Article  Google Scholar 

  • Chiauzzi L, Masi A, Mucciarelli M, Vona M, Pacor F, Cultrera G, Gallovič F, Emolo A (2012) Building damage scenarios based on exploitation of Housner Intensity derived from finite faults ground motion simulations. Bull Earthq Eng 10(2):517–545

    Article  Google Scholar 

  • Copernicus (2016) http://emergency.copernicus.eu/mapping/list-of-components/EMSR177. Accessed 13 Aug 2018

  • Di Giulio G, Azzara RM, Cultrera G, Giammarinaro MS, Vallone P, Rovelli A (2005) Effect of local geology on ground motion in the city of Palermo, Italy, as inferred from aftershocks of the 6 September 2002 MW 5.9 earthquake. Bull Seismol Soc Am 95:2328–2341

    Article  Google Scholar 

  • Galli P, Bosi V, Piscitelli S, Giocoli A, Scionti V (2006) Late Holocene earthquakes in southern Apennines: paleoseismology of the Caggiano fault. Int J Earth Sci 95:855–870

    Article  Google Scholar 

  • Gallipoli MR, Mucciarelli M, Castro RR, Monachesi G, Contri P (2004) Structure, soil–structure response and effects of damage based on observations of horizontal-to-vertical spectral ratio of microtremors. Soil Dyn Earthq Eng 24(6):487–495

    Article  Google Scholar 

  • Gallipoli MR, Chiauzzi L, Stabile TA, Mucciarelli M, Masi A, Lizza C, Vignola L (2014) The role of site effects in the comparison between code provisions and the near field strong motion of the Emilia 2012 earthquakes. Bull Earthq Eng 12(5):2211–2230

    Article  Google Scholar 

  • GdL INGV 2016, Gruppo di Lavoro INGV sul terremoto di Amatrice (2016) Secondo rapporto di sintesi sul Terremoto di Amatrice Ml 6.0 del 24 Agosto 2016 (Italia Centrale). https://doi.org/10.5281/zenodo.154400

  • Giocoli A, Galli P, Giaccio B, Lapenna V, Messina P, Peronace E, Romano G, Piscitelli S (2011) Electrical resistivity tomography across the Paganica-San Demetrio fault system (L’Aquila 2009 earthquake). Boll Geof Teor Appl 52(3):457–469

    Google Scholar 

  • Grimaz S, Malisan P, Bolognese C, Cavriani M, Mannino E, Munaro L (2016) The short-term countermeasures system of the Italian national fire service for post-earthquake response. Boll Geof Teor Appl 57(2):161–182

    Google Scholar 

  • Housner GW (1952) Intensity of ground motion during strong earthquakes. Second technical report. August 1952, California Institute of Tecsxhnology, Pasedena, California

  • ISTAT (2011) 15th Population and housing census. https://www.istat.it/it/archivio/104317. Accessed 13 Aug 2018 (in Italian)

  • Konno K, Ohmachi T (1998) Ground-motion characteristic estimated from spectral ratio between horizontal and vertical components of micro-tremor. Bull Seismol Soc Am 88:228–241

    Google Scholar 

  • Kottke A, Rathje EM (2008) A semi-automated procedure for selecting and scaling recorded earthquake motions for dynamic analysis. Earthq Spectra 24(4):911–932

    Article  Google Scholar 

  • Loke MH (2001) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Penang, p 127

    Google Scholar 

  • Mucciarelli M (1998) Reliability and applicability of Nakamura’s technique using microtremors: an experimental approach. J Earthq Eng 2(4):625–638

    Google Scholar 

  • Mucciarelli M (2006) Jumpin’ Joy quake. Seismol Res Lett 77(6):744–745

    Article  Google Scholar 

  • Mucciarelli M, Herak M, Cassidy J (eds) (2009) Increasing seismic safety by combining engineering technologies and seismological data (NATO Science for Peace and Security Series C: Environmental). Springer, Berlin, XVIII. ISBN: 978-1-4020-9194-0

    Google Scholar 

  • Mucciarelli M, Bianca M, Ditommaso R, Gallipoli MR, Masi A, Parolai S, Picozzi M, Milkereit C, Vona M (2011) Far field damage on RC buildings: the case study of the Navelli during the L’Aquila (Italy) seismic sequence 2009. Bull Earthq Eng 9:263–283

    Article  Google Scholar 

  • NTC08 (2008) D.M. 14 gennaio 2008 - Norme tecniche per le costruzioni. Ministero delle Infrastrutture. http://www.cslp.it. Accessed 13 Aug 2018 (in Italian)

  • Ohori M, Nobata A, Wakamatsu K (2002) A comparison of ESAC and Fk methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bull Seismol Soc Am 92:2323–2332

    Article  Google Scholar 

  • Okada H (2003) The microtremor survey method. Geophysical Monograph Series. SEG, Houston, p 2003

    Book  Google Scholar 

  • Parolai S, Galiana-Merino JJ (2006) Effect of transient seismic noise on estimates of H/V spectral ratios. Bull Seismol Soc Am 96:228–236

    Article  Google Scholar 

  • Parolai S, Richwalski SM, Milkereit C, Faeh D (2006) S-wave velocity profile for earthquake engineering purposes for the Cologne area (Germany). Bull Earthq Eng 4(1):65–94. https://doi.org/10.1007/s10518-005-5758-2

    Article  Google Scholar 

  • Pierantoni P, Deiana G, Galdenzi S (2013) Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital J Geosci (Boll Soc Geol It) 132(3):497–520. https://doi.org/10.3301/IJG.2013.08

    Article  Google Scholar 

  • SESAME Project (2014) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation, WP12, deliverable no. D23.12, 2004. ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/SESAME/USER-GUIDELINES/SESAME-HV-User-Guidelines.pdf. Accessed 13 Aug 2018

  • Strollo A, Parolai S, Bindi D, Chiauzzi L, Pagliuca R, Mucciarelli M, Zschau J (2012) Microzonation of Potenza (Southern Italy) in terms of Spectral Intensity Ratio using joint analysis of earthquakes and ambient noise. Bull Earthq Eng 10(2):493–516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Gallipoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignola, L., Gallipoli, M.R., Chiauzzi, L. et al. Geophysical and engineering analysis of different earthquake damage in Pescara del Tronto and Vezzano (Arquata del Tronto Municipality) following the 24th August 2016 central Italy earthquake. Bull Earthquake Eng 17, 5471–5493 (2019). https://doi.org/10.1007/s10518-018-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0450-5

Keywords

Navigation