Skip to main content
Log in

Infestation of the invasive mollusc Crepidula fornicata by the native shell borer Cliona celata: a case of high parasite load without detrimental effects

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The temporal prevalence of the widespread boring sponge Cliona celata and its effects were analysed in a population of the invasive mollusc Crepidula fornicata. This mollusc produces extra shell material when infested with the endolithic sponge, suggesting that infestation may be detrimental for C. fornicata growth and/or reproduction. For 37 months, size, sex, female reproductive status and sponge-infestation stage were recorded for 300 individuals sampled every month in the Bay of Morlaix (France). In the 12,049 individuals examined, the prevalence of C. celata was high with a monthly average of 43.1% of the individuals hosting the sponge. The relative proportion of heavily infested individuals generally increased over time. Nevertheless, a cyclic decrease occurred every 10 months, suggesting putative episodes of mortality of heavily infested individuals. The gregarious behaviour of the mollusc seemed to promote the high prevalence of the sponge, which may propagate through contact between neighbouring C. fornicata individuals. Due to the sex-size relationship in protandrous C. fornicata, females were far more infested than males. We did not find evidence for a cost of producing extra shell material on somatic growth or on female fertility, and the boring sponge is unlikely to substantially affect the sex-change patterns in C. fornicata. The limited effects of the endolithic sponge on C. fornicata contrasts with the documented damage to some local species, including commercially exploited shellfish, suggesting that C. fornicata may alter the infestation dynamics in the surrounding native community. Dedicated studies are now needed to investigate the extent and mechanisms of these species interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barucca M, Azzini F, Bavestrello G, Biscotti M, Calcinai B, Canapa A, Cerrano C, Olmo E (2007) The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. Mar Biol 151:529–535. doi:10.1007/s00227-006-0486-y

    Article  Google Scholar 

  • Blanchard M (1995) Origin and present state of the slipper limpet (Crepidula fornicata) population, (Gastropoda Prosobranchia) on French coasts. Haliotis 24:75–86

    Google Scholar 

  • Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L.1758) in Europe. Current state and consequences. Sci Mar 61:109–118

    Google Scholar 

  • Brante A, Fernàndez M, Viard F (2008) Effect of oxygen conditions on intracapsular development in two calyptraeid species with different modes of larval development. Mar Ecol Prog Ser 368:197–207. doi:10.3354/meps07605

    Article  Google Scholar 

  • Buschbaum C, Buschbaum G, Schrey I, Thieltges DW (2007) Shell-boring polychaetes affect gastropod shell strength and crab predation. Mar Ecol Prog Ser 329:123–130. doi:10.3354/meps329123

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton university press, New Jersey

    Google Scholar 

  • Chipperfield PNJ (1951) The breeding of Crepidula fornicata in the River Blackwater, Essex. J Mar Biol Assoc UK 30:49–71

    Article  Google Scholar 

  • Clavier J (1989) Infestation of Haliotis tuberculata shells by Cliona celata and Polydora species. In: Guzman del Proo SA, Tegner MJ, Shepherd SA (eds) Abalone of the world: biology, fisheries and culture supplementary papers, pp 16–20, La Paz

  • Coe WR (1938) Conditions influencing change of sex in mollusks of the genus Crepidula. J Exp Zool 77:401–424

    Article  Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733. doi:10.1111/j.1461-0248.2004.00616.x

    Article  Google Scholar 

  • Collin R (1995) Sex, size and position: a test of models predicting size at sex change in the protandrous gastropod Crepidula fornicata. Am Nat 146:815–831. doi:10.1086/285826

    Article  Google Scholar 

  • Collin R (2006) Sex ratio, life-history invariants, and patterns of sex change in a family of protandrous gastropods. Evolution 60:735–745. doi:10.1111/j.0014-3820.2006.tb01152.x

    PubMed  Google Scholar 

  • Conklin EG (1898) Environmental and sexual dimorphism in Crepidula. Proc Acad Nat Sci Philadelphia 50:435–444

    Google Scholar 

  • De Montaudouin X, Sauriau PG (1999) The proliferating Gastropoda Crepidula fornicata may stimulate macrozoobenthic diversity. J Mar Biol Assoc UK 79:1069–1077. doi:10.1017/S0025315499001319

    Article  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Dunn AM (2009) Parasites and biological invasions. Advances in parasitology, vol 68. Elsevier Academic Press Inc, San Diego, pp 161–184. doi:10.1016/S0065-308X(08)00607-6

    Google Scholar 

  • Dupont L, Richard J, Paulet YM, Thouzeau G, Viard F (2006) Gregariousness and protandry promote reproductive insurance in the invasive gastropod Crepidula fornicata: evidence from assignment of larval paternity. Mol Ecol 15:3009–3021. doi:10.1111/j.1365-294X.2006.02988.x

    Article  PubMed  CAS  Google Scholar 

  • Dupont L, Bernas D, Viard F (2007) Sex and genetic structure across age groups in populations of the European marine invasive mollusc, Crepidula fornicata L. (Gastropoda). Biol J Linnean Soc 90:365–374. doi:10.1111/j.1095-8312.2007.00731.x

    Article  Google Scholar 

  • Evans JW (1969) Borers in the shell of the sea scallop, Placopecten magellnnicus. Am Zool 9:775–782. doi:10.1093/icb/9.3.775

    Google Scholar 

  • Fromont J, Craig R, Rawlinson L, Alder J (2005) Excavating sponges that are destructive to farmed pearl oysters in Western and Northern Australia. Aquac Res 36:150–162. doi:10.1111/j.1365-2109.2004.01198.x

    Article  Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44

  • Guida VG (1976) Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J Exp Mar Biol Ecol 25:109–122. doi:10.1016/0022-0981(76)90012-5

    Article  Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90. doi:10.1034/j.1600-0706.2003.12322.x

    Article  Google Scholar 

  • Hart AM, Friedman KJ (2004) Mother-of-pearl shell (Pinctada maxima): stock evaluation for management and future harvesting in Western Australia. Fisheries research contract report. WA Marine Research Laboratories, North Beach

    Google Scholar 

  • Hartman WD (1957) Ecological niche differentiation in the boring sponges (Clionidae). Evolution. 11:294–297

    Article  Google Scholar 

  • Hartman WD (1958) Natural history of the marine sponges of the Southern New England. Bull Peabody Mus Nat Hist 12:1–155

    Google Scholar 

  • Hoagland KE (1978) Protandry and the evolution of environmentally-mediated sex change: a study of the Mollusca. Malacologia 17:365–391

    Google Scholar 

  • Hoeksema BW (1983) Excavating patterns and spiculae dimensions of the boring sponge Cliona celata from SW Netherlands. Senck marit 15:55–85

    Google Scholar 

  • Huchette S, Paillard C, Clavier J, Day R (2006) Shell disease: abnormal conchiolin deposit in the abalone Haliotis tuberculata. Dis Aquat Org 68:267–271. doi:10.3354/dao068267

    Article  PubMed  Google Scholar 

  • Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056. doi:10.1890/08-1085.1

    Article  PubMed  CAS  Google Scholar 

  • Le Cam, S. (2009). Gregarité, changement de sexe et polyandrie: modalites de la reproduction chez une espèce invasive Crepidula fornicata. Thèse de doctorat, Université Pierre et Marie Curie-Paris 6, Paris

  • Le Cam S, Pechenik JA, Cagnon M, Viard F (2009) Fast vs. slow larval growth in an invasive marine mollusc: does paternity matter? J Hered 100: 455–464. doi: 10.1093/jhered/esp007

    Google Scholar 

  • Le Pape O, Guérault D, Désaunay Y (2004) Effect of an invasive mollusc, American slipper limpet Crepidula fornicata, on habitat suitability for juvenile common sole Solea solea in the Bay of Biscay. Mar Ecol Prog Ser 277:107–115. doi:10.3354/meps277107

    Article  Google Scholar 

  • Lévi C (1950) Inventaire de la faune marine de Roscoff–Spongiaires-Suppl 2. Travaux de la Station Biologique de Roscoff, Roscoff

    Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790. doi:10.1007/s002270000400

    Article  Google Scholar 

  • Marin MG, Moschino V, Meneghetti F, Da Ros L (2005) Effects of mechanical stress in under-sized clams, Tapes philippinarum: a laboratory approach. Aquacult Int 13:75–88. doi:10.1007/s10499-004-9029-z

    Article  Google Scholar 

  • McEdward LR, Coulter LK (1987) Egg volume and energetic content are not correlated among sibling offspring of starfish: implications for life-history theory. Evolution 41:914–917

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492. doi:10.1890/070064

    Article  Google Scholar 

  • Palmer AR (1992) Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci U S A 89:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319

    Article  CAS  Google Scholar 

  • Richard J, Huet M, Thouzeau G, Paulet YM (2006) Reproduction of the invasive slipper limpet, Crepidula fornicata, in the bay of Brest, France. Mar Biol 149:789–801. doi:10.1007/s00227-005-0157-4

    Article  Google Scholar 

  • Rosell D, Uriz MJ, Martin D (1999) Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea). J Mar Biol Assoc UK 79:409–413

    Article  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, h. Wo MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Ann Rev Ecol Syst 31:481–531. doi:10.1146/annurev.ecolsys.31.1.481

    Article  Google Scholar 

  • Schleyer MH (1991) Shell-borers in the oyster, Striostrea margaritacea: pests or symbionts? Symbiosis 10:135–144

    Google Scholar 

  • Shumway SE (1977) Effect of salinity fluctuation on the osmotic pressure and Na+, Ca2+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. Mar Biol 41:153–177. doi:10.1007/BF00394023

    Article  CAS  Google Scholar 

  • Skúladóttir U (1998) Size at sexual maturity of female northern shrimp (Pandalus borealis Kroyer) in the Denmark Strait 1985–93 and a comparison with the nearest Icelandic shrimp populations. J Northw Atl Fish Sci 24:27–37

    Article  Google Scholar 

  • Snowden E (2007) Cliona celata. A sponge–marine life information network: biology and sensitivity key information sub-programme [on-line]. Plymouth: marine biological association of the United Kingdom [cited 21/11/2008]. Available from: http://www.marlin.ac.uk/species/Clionacelata.htm

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Sousa R, Gutiérrez J, Aldridge D (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biol Inv 11:2367–2385. doi:10.1007/s10530-009-9422-7

    Article  Google Scholar 

  • Stefaniak LM, McAtee J, Shulman MJ (2005) The costs of being bored: effects of a clionid sponge on the gastropod. J Exp Mar Biol Ecol 327:103–114. doi:10.1016/j.jembe.2005.06.007

    Article  Google Scholar 

  • Stokesbury KDE, Harris BP, Marino MC, Nogueira JI (2007) Sea scallop mass mortality in a marine protected area. Mar Ecol Prog Ser 349:151–158. doi:10.3354/meps07113

    Article  Google Scholar 

  • R Development Core Team (2007) http://www.R-project.org

  • Thieltges DW (2005) Impact of an invader: epizootic American slipper limpet Crepidula fornicata reduces survival and growth in European mussels. Mar Ecol Prog Ser 286:13–19. doi:10.3354/meps286013

    Article  Google Scholar 

  • Thieltges DW, Reise K, Prinz K, Jensen KT (2009) Invaders interfere with native parasite-host interactions. Biol Inv 11:1421–1429. doi:10.1007/s10530-008-9350-y

    Article  Google Scholar 

  • Topsent E (1891) Essai sur la faune des spongiaires de Roscoff. Archives de zoologie expérimentale et générale, 2eme série. 9: 523–554

  • Torchin ME, Lafferty KD, Kuris AM (2002) Parasites and marine invasions. Parasitology 124:S137–S151. doi:10.1017/S0031182002009873

    Article  Google Scholar 

  • Warburton FE (1958) Control of the boring sponge on oyster beds. Prog rep Atl Coast Stations of the Fisheries Res Board of Canada 69:7–11

    Google Scholar 

  • Warburton FE (1966) The behavior of sponge larvae. Ecology 47:672–674

    Article  Google Scholar 

  • Wesche SJ, Adlard RD, Hooper JNA (1997) The first incidence of clionid sponges (Porifera) from the Sydney rock oyster Saccostrea commercialis (Iredale and Roughley, 1933). Aquaculture 15:173–180

    Article  Google Scholar 

  • Zilberberg C, Maldonado M, Solé-Cava AM (2006) Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25:297–301. doi:10.1007/s00338-006-0094-9

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the scuba divers of the “Service Mer et Observation” [Marine Operations Department] (FR2424) at the Station Biologique de Roscoff, for carrying out all the samplings. We thank Myriam Mylbergue for help in gathering part of this dataset and Rachel Collin for valuable comments and stimulating discussion on a previous version of the manuscript. We are also thankful to Abigail Cahill and Pedro Morais for editing the manuscript and to two anonymous reviewers for their fruitful comments on an earlier version of this manuscript. F. V and S. L. C are the beneficiaries of a financial contribution from the AXA Research Fund (“Marine Aliens and Climate Change” project) and the INTERREG programme (“MARINEXUS” project). This work is part of S. L. C’s PhD thesis and S. L. C benefited from a grant by the Ministère de l’Enseignement Supérieur et de la Recherche [French Ministry of Higher Education and Research].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabrina Le Cam or Frédérique Viard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Cam, S., Viard, F. Infestation of the invasive mollusc Crepidula fornicata by the native shell borer Cliona celata: a case of high parasite load without detrimental effects. Biol Invasions 13, 1087–1098 (2011). https://doi.org/10.1007/s10530-011-9958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-9958-1

Keywords

Navigation