Skip to main content

Advertisement

Log in

Can monitoring data contribute to the biodiversity-ecosystem function debate? Evaluating data from a highly dynamic ecosystem

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

One of the most controversially discussed topics in current biodiversity-ecosystem function research is the transfer of results from experimental and theoretical studies to natural ecosystems. At the same time, monitoring data on biodiversity are requested as key indicators for the state of an ecosystem in most environmental evaluation frameworks. We analyse two monitoring data sets comprising information on abundance and biomass of macrozoobenthos communities in the German Wadden Sea in order to evaluate how much information monitoring data on biodiversity provide concerning ecosystem functioning and what implications this information (or the lack thereof) has for future monitoring programmes. Our results show a positive correlation between number of species of macrozoobenthos and its standing stock. Despite differences in overall biomass and individual size in different functional groups, this correlation remained consistent for different feeding guilds and therefore is likely to be independent of certain species traits. Moreover, functional turnover analyses indicate that increasing species richness is needed to maintain biomass levels over increasing periods of time. Whereas our data thus corroborate predictions from theory, we could not determine any causal relationships, because monitoring data commonly include only vague proxies for very few functional parameters, in our case standing biomass as a proxy for production. As to the use of diversity as an indicator for ecosystem functioning, we advise that management decisions are to be based on verified causal relationships and therefore strongly suggest the general incorporation of unambiguous proxies for functional parameters in the measuring campaigns of monitoring programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarssen LW (1997) High productivity in Grassland Ecosystems: effected by species diversity or productive species? Oikos 80:183–184

    Article  Google Scholar 

  • Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H (2011) More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci USA 108:17034–17039

    Article  CAS  PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Banse K, Mosher S (1980) Adult body mass and annual production/biomass relationships of field populations. Ecol Monogr 50:355–379

    Article  Google Scholar 

  • Berelson WM, Heggie D, Longmore A, Kilgore T, Nicholson G, Skyring G (1998) Benthic nutrient recycling in Port Phillip Bay, Australia. Estuar Coast Shelf Sci 46:917–934

    Article  CAS  Google Scholar 

  • Beukema JJ (1976) Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea. Neth J Sea Res 10:236–261

    Article  Google Scholar 

  • Bonsdorff E, Pearson TH (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Aust J Ecol 24:312–326

    Article  Google Scholar 

  • Bruno JF, Boyer KE, Duffy JE, Lee SC, Kertesz JS (2005) Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecol Lett 8:1165–1174

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–18128

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009) Separating the influence of resource “availability” from resource “imbalance” on productivity-diversity relationships. Ecol Lett 12:475–487

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Covich AP, Austen MC, Bärlocher F, Chauvet E, Cardinale BJ, Biles CL, Inchausti P, Dangles O, Solan M, Gessner MO, Statzner B, Moss B (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775

    Article  Google Scholar 

  • Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O’Connor NE, Emmerson MC (2013) On the dimensionality of ecological stability. Ecol Lett 16:421–429

    Article  PubMed  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Essink K, Beukema JANJ, Madsen PB, Michaelis H, Vedel GR (1998) Long-term development of biomass of intertidal macrozoobenthos in different parts of the Wadden Sea. governed by nutrient loads? Senckenb Marit 29:25–35

    Article  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H (2008) Biodiversity effects on aquatic ecosystem functioning—maturation of a new paradigm. Int Rev Hydrobiol 93:550–564

    Article  Google Scholar 

  • Grace JB, Michael Anderson T, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  • Gross K, Cardinale BJ (2005) The functional consequences of random vs. ordered species extinctions. Ecol Lett 8:409–418

    Article  Google Scholar 

  • Hanslik M (2002) Bund/Länder-Messprogramm, Nord- Und Ostsee AG Qualitätssicherung, „Meeresmonitoring Und Qualitätssicherung“

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  • Hillebrand H, Burgmer T, Biermann E (2012) Running to stand still: temperature effects on species richness, species turnover, and functional community dynamics. Marine Biol 159:2415–2422

    Google Scholar 

  • Hughes DJ, Atkinson RJA, Ansell AD (2000) A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes. Marine Ecol Prog Ser 195:189–199

    Article  CAS  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22:415–427

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  CAS  PubMed  Google Scholar 

  • Jaccard P (1912) The distribution of the Flora in the Alpine Zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans R Soc Lond Series B Biol Sci 365:49–60

    Article  Google Scholar 

  • Michaelis H (1987) Bestandsaufnahme des eulitoralen Makrobenthos im Jadebusen in Verbindung mit einer Luftbild-Analyse, FSK Jahresbericht Bd. 38

  • Mistri M, Fano EA, Rossi R (2001) Macrofaunal secondary production in a lagoon of the Po River Delta: an evaluation of estimation methods. Italian J Zool 68:147–151

    Article  Google Scholar 

  • O’Connor NE, Donohue I (2013) Environmental context determines multi-trophic effects of consumer species loss. Glob Change Biol 19:431–440

    Article  Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P, Lepistö L, Willén E, Rekolainen S (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc Natl Acad Sci USA 105:5134–5138

    Article  CAS  PubMed  Google Scholar 

  • R Developement Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schwinghamer P, Hargrave B, Pee D, Hawkins CM (1986) Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Marine Ecol Prog Ser 31:131–142

    Article  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Stachowicz JJ, Best RJ, Bracken MES, Graham MH (2008) Complementarity in marine biodiversity manipulations: reconciling divergent evidence from field and mesocosm experiments. Proc Natl Acad Sci USA 105:18842–18847

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tylianakis JM, Rand TA, Kahmen A, Klein A-M, Buchmann N, Perner J, Tscharntke T (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems (ed M Loreau). PLoS Biol 6:e122

    Article  PubMed Central  Google Scholar 

  • Wiltshire K, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland roads. Limnol Oceaniographyogr 53:1294–1302

    Article  Google Scholar 

  • Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–1446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Lower Saxony Ministry for Environment and Climate Protection and the Lower Saxony Ministry for Science and Culture funded this work as part of the collaborative research project WiMo (“Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht”). We thank the Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency and the National Park “Niedersächsisches Wattenmeer” for providing the data, especially M. Grotjahn and M. Reetz for their continuous support and advice and I. Kröncke for contributing additional species information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Hodapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

List of the additional environmental parameters recorded for each sample

Online Resource 2

List of all species, their assigned feeding guilds and individual biomass values

Online Resource 3

Average relative contribution to total biomass for each species and station

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodapp, D., Kraft, D. & Hillebrand, H. Can monitoring data contribute to the biodiversity-ecosystem function debate? Evaluating data from a highly dynamic ecosystem. Biodivers Conserv 23, 405–419 (2014). https://doi.org/10.1007/s10531-013-0609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0609-y

Keywords

Navigation