Skip to main content

Advertisement

Log in

Sediment-benthos relationships as a tool to assist in conservation practices in a coastal lagoon subjected to sediment change

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study explores the relation between sediment composition and intertidal macrobenthos populations in the Zwin nature reserve (Belgium and The Netherlands), a tidal lagoon that is included in the Ramsar list of wetlands of international importance and has been designated as Natura 2000 area, among others due to its function as wintering habitat for shorebirds that feed upon macrobenthic invertebrates. Species response models show highest biomass of these prey species in organically enriched cohesive sediments and a distinct decline in probability of occurrence for most species in coarse sediments. Further, the biomass of macrobenthos declined between 2003 and 2010 in the extensive low intertidal inlet channel concurrent with the coarsening of the sediment over time in this hydrodynamically stressed habitat. In contrast, macrobenthos biomass increased in a sheltered shallow intertidal habitat that acted as a catchment area for finer sediments, therefore facilitating the succession towards a higher elevated habitat with salt marsh vegetation establishment. Hence, spatio-temporal sediment dynamics decreased site quality for intertidal predators due to a reduction in feeding areas over time, and a change in physical sediment properties that alter the macrobenthos species occurrence and population biomass. This study thus illustrates that sediment transport dynamics may affect the functioning of coastal shallow soft-sediment habitats, like coastal lagoons. The presented macrobenthos species response models provide a tool to assist in management actions that enable the conservation of cohesive low intertidal habitats that provide a high food supply to shorebirds, fish and macrocrustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol 45:345–405. doi:10.1201/9781420050943

    Google Scholar 

  • Alves JA, Sutherland WJ, Gill JA (2012) Will improving wastewater treatment impact shorebirds? Effects of sewage discharges on estuarine invertebrates and birds. Anim Conserv 15:44–52

    Article  Google Scholar 

  • BirdLife International (2012) In: IUCN 2013. IUCN red list of threatened species. Version 2013.1. www.iucnredlist.org. Accessed 05 July 2013

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. doi:10.1016/j.tree.2008.03.011

    Article  PubMed  Google Scholar 

  • Carvalho S, Moura A, Gaspar MB, Pereira P, da Fonseca LC, Falcao M, Drago T, Leitao F, Regala J (2005) Spatial and inter-annual variability of the macrobenthic communities within a coastal lagoon (Obidos lagoon) and its relationship with environmental parameters. Acta Oecol 27:143–159. doi:10.1016/j.actao.2004.11.004

    Article  Google Scholar 

  • Chapman PM (2012) Management of coastal lagoons under climate change. Estuar Coast Shelf Sci 110:32–35

    Article  Google Scholar 

  • Cosyns E, Courtens C, Lebbe L, Provoost S, Van Colen C, Agten L, Vincx M, Verbelen D, Lambrechts J, Zwaenepoel A (2013) Gebiedsvisie voor het grensoverschrijdende uitgebreide Zwin en beheerplan voor het uitgebreide Zwin aan Vlaamse zijde. Rapport Wvi, INBO en Universiteit Gent i.o.v. Agentschap voor Natuur en Bos, Provinciale dienst West-Vlaanderen

  • Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological cascade effect–migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    Article  CAS  Google Scholar 

  • De Backer A, Van Colen C, Vincx M, Degraer S (2010) The role of biophysical interactions within the ijzermonding tidal flat sediment dynamics. Cont Shelf Res 30:1166–1179. doi:10.1016/j.csr.2010.03.006

    Article  Google Scholar 

  • Duck RW, da Silva JF (2012) Coastal lagoons and their evolution: a hydromorphological perspective. Estuar Coast Shelf S 110:2–14

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Elliott M, Whitfield AK (2011) Challenging paradigms in estuarine ecology and management. Estuar Coast Shelf Sci 94:306–314

    Article  Google Scholar 

  • Goss-Custard JD, West AD, Yates MG, Caldow RWG, Stillman RA, Bardsley L, Castilla J, Castro M, Dierschke V, Durell SEALD, Eichhorn G, Ens BJ, Exo KM, Udayangani-Fernando PU, Ferns PN, Hockey PAR, Gill JA, Johnstone I, Kalejta-Summers B, Masero JA, Moreira F, Nagarajan RV, Owens IPF, Pacheco C, Perez-Hurtado A, Rogers D, Scheiffarth G, Sitters H, Sutherland WJ, Triplet P, Worrall DH, Zharikov Y, Zwarts L, Pettifor RA (2006) Intake rates and the functional response in shorebirds (Charadriiformes) eating macro-invertebrates. Biol Rev 81:501–529

    Article  PubMed  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci Rev 105:101–120. doi:10.1016/j.earscirev.2011.01.008

    Article  Google Scholar 

  • Hampel H, Cattrijsse A, Elliott M (2005) Feeding habits of young predatory fishes in marsh creeks situated along the salinity gradient of the Schelde estuary, Belgium and The Netherlands. Helgoland Mar Res 59:151–162. doi:10.1007/s10152-004-0214-2

    Article  Google Scholar 

  • Herrier J-L, Leten M (2010) Restoration of the tidal lagoon of the Zwin. Proceedings of the 7th European conference on ecological restoration. Avignon, France

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecology Evol 19:101–108

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:618–622. doi:10.1029/2010gl045489

    Article  Google Scholar 

  • Kraan C, van Gils JA, Spaans B, Dekinga A, Piersma T (2010) Why Afro-Siberian Red Knots Calidris canutus canutus have stopped staging in the western Dutch Wadden Sea during southward migration. Ardea 98:155–160

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809. doi:10.1126/science.1128035

    Article  CAS  PubMed  Google Scholar 

  • Maslo B, Lockwood JL (2009) Evidence-based decisions on the use of predator exclosures in shorebird conservation. Biol Conserv 142:3213–3218. doi:10.1016/j.biocon.2009.07.034

    Article  Google Scholar 

  • Nordstrom M, Hogmander J, Nummelin J, Laine J, Laanetu N, Korpimaki E (2002) Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography 25:385–394. doi:10.1034/j.1600-0587.2002.250401.x

    Article  Google Scholar 

  • Plecha S, Silva PA, Oliveira A, Dias JM (2012) Establishing the wave climate influence on the morphodynamics of a coastal lagoon inlet. Ocean Dynam 62:799–814

    Article  Google Scholar 

  • Quammen ML (1982) Influence of subtle substrate differences on feeding by shorebirds on intertidal mudflats. Mar Biol 71:339–343. doi:10.1007/Bf00397050

    Article  Google Scholar 

  • Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Sistermans WCH, Escaravage V, Hummel H, Bergmeijer MA, Engelberts AGM, Dek L., van Hoessel OJA, Markusse MM (2007) Het macrobenthos van de Westerschelde, de Oosterschelde, het Veerse Meer en het Grevelingenmeer in het voor- en najaar van 2006. KNAW Netherlands Institute of Ecology—Centre for Estuarine and Marine Ecology, Yerseke

  • Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: sedimentary habitats—Ocean bottoms are the most widespread habitat on Earth and support high biodiversity and key ecosystem services. Bioscience 49:129–138. doi:10.2307/1313538

    Article  Google Scholar 

  • Sutherland WJ, Alves JA, Amano T, Chang CH, Davidson NC, Finlayson CM, Gill JA, Gill RE, Gonzalez PM, Gunnarsson TG, Kleijn D, Spray CJ, Szekely T, Thompson DBA (2012) A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis 154:663–679

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI (2003) Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar Ecol-Prog Ser 263:101–112. doi:10.3354/Meps263101

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Cummings V, Ellis JI, Hatton C, Lohrer A, Norkko A (2004) Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Environ 2:299–306. doi:10.2307/3868405

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x

    Article  PubMed  Google Scholar 

  • Van Colen C, Vincx M, Degraer S (2006) Does medium-term emersion cause a mass extinction of tidal flat macrobenthos? The case of the tricolor oil pollution prevention in the Zwin nature reserve (Belgium and The Netherlands). Estuar Coast Shelf Sci 68:343–347. doi:10.1016/j.ecss.2006.02.013

    Article  Google Scholar 

  • Van Colen C, Snoeck F, Struyf K, Vincxi M, Degraer S (2009) Macrobenthic community structure and distribution in the Zwin nature reserve (Belgium and The Netherlands). J Mar Biol Assoc Uk 89:431–438. doi:10.1017/S0025315409003257

    Article  Google Scholar 

  • Van Colen C, De Backer A, Meulepas G, van der Wal D, Vincx M, Degraer S, Ysebaert T (2010a) Diversity, trait displacements and shifts in assemblage structure of tidal flat deposit feeders along a gradient of hydrodynamic stress. Mar Ecol-Prog Ser 406:79–89. doi:10.3354/Meps08529

    Article  Google Scholar 

  • Van Colen C, Montserrat F, Vincx M, Herman PMJ, Ysebaert T, Degraer S (2010b) Macrobenthos recruitment success in a tidal flat: feeding trait dependent effects of disturbance history. J Exp Mar Biol Ecol 385:79–84

    Article  Google Scholar 

  • van de Kam J, Ens BJ, Piersma T, Zwarts L et al (2004) Shorebirds: an illustrated behavioural ecology. KNNV Puublishers, Utrecht, p 368

    Google Scholar 

  • van der Wal D, Herman PMJ, Forster RM, Ysebaert T, Rossi F, Knaeps E, Plancke YMG, Ides SJ (2008) Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Mar Ecol-Prog Ser 367:57–72. doi:10.3354/Meps07535

    Article  Google Scholar 

  • van Gils JA, Piersma T, Dekinga A, Spaans B, Kraan C (2006) Shellfish dredging pushes a flexible avian top predator out of a marine protected area. PLoS Biol 4:2399–2404

    Google Scholar 

  • Warwick RM, Ashman CM, Brown AR, Clarke KR, Dowell B, Hart B, Lewis RE, Shillabeer N, Somerfield PJ, Tapp JF (2002) Inter-annual changes in the biodiversity and community structure of the macrobenthos in Tees Bay and the Tees estuary, UK, associated with local and regional environmental events. Mar Ecol-Prog Ser 234:1–13. doi:10.3354/Meps234001

    Article  Google Scholar 

  • Ysebaert T, Herman PMJ (2002) Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Mar Ecol-Prog Ser 244:105–124. doi:10.3354/Meps244105

    Article  Google Scholar 

  • Ysebaert T, Meire P, Herman PMJ, Verbeek H (2002) Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar Ecol-Prog Ser 225:79–95. doi:10.3354/Meps225079

    Article  Google Scholar 

Download references

Acknowledgments

C.V.C. acknowledges a postdoctoral fellowship provided by the Flemish Fund for Scientific Research (FWO-1.2.380.11.N.00). We thank L. De Middeleer, F. Snoeck, R. Vanhulle, B. Beuselinck and N. Viane for collecting and processing of the benthic samples. Bird counts were obtained from Mergus (vogelwerkgroep Natuurpunt —Noord-West-Vlaanderen). We especially want to thank G. Burggraeve, F. De Scheemaeker, J. De Buck, and R. Deman for performing the bird censuses. Parts of the data used for this study were obtained in the framework of the project BBSea (BOF-GOA 01600705) and “Understanding biodiversity effects on the functioning of marine benthic ecosystems” (BOF GOA 01GA1911 W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Van Colen.

Additional information

Communicated by Elizabeth Masden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Colen, C., Verbelen, D., Devos, K. et al. Sediment-benthos relationships as a tool to assist in conservation practices in a coastal lagoon subjected to sediment change. Biodivers Conserv 23, 877–889 (2014). https://doi.org/10.1007/s10531-014-0638-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0638-1

Keywords

Navigation