Skip to main content

Advertisement

Log in

Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils?

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nutrient cations can limit plant productivity in highly weathered soils, but have received much less attention than phosphorus and nitrogen. The reduction of iron (Fe) in anaerobic microsites of surface soils can solubilize organic matter and P sorbed or occluded with short-range-ordered (SRO) Fe phases. This mechanism might also release occluded cations. In the Luquillo Experimental Forest, Puerto Rico, we measured cation release during anaerobic laboratory incubations, and assessed patterns of cation availability in surface soils spanning ridge-slope-valley catenas. During anaerobic incubations, potassium (K), calcium (Ca) and magnesium (Mg) significantly increased with reduced Fe (Fe(II)) in both water and 0.5 M HCl extractions, but did not change during aerobic incubations. In the field, 0.5 M HCl-extractable Fe(II) and Fe(III) were the strongest predictors of K, Mg, and Ca on ridges (R2 0.57–0.75). Here, both Ca and Mg decreased with Fe(III), while K, Ca, and Mg increased with Fe(II), consistent with release of Fe-occluded cations following Fe reduction. Manganese in ridge soils was extremely low, consistent with leaching following reductive dissolution of Mn(IV). On slopes, soil C was the strongest cation predictor, consistent with the importance of organic matter for cation exchange in these highly weathered Oxisols. In riparian valleys, cation concentrations were up to 16-fold greater than in other topographic positions but were weakly or unrelated to measured predictors, potentially reflecting cation-rich groundwater. Predictors of cation availability varied with topography, but were consistent with the potential importance of microsite Fe reduction in liberating occluded cations, particularly in the highly productive ridges. This mechanism may explain discrepancies among indices of “available” soil cations and plant cation uptake observed in other tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baribault TW, Kobe RK, Finley AO (2011) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol Monogr 82:189–203. doi:10.1890/11-1013.1

    Article  Google Scholar 

  • Brinkman R (1970) Ferrolysis, a hydromorphic soil forming process. Geoderma 3:199–206. doi:10.1016/0016-7061(70)90019-4

    Article  Google Scholar 

  • Buettner SW, Kramer MG, Chadwick OA, Thompson A (2014) Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma 221–222:139–145. doi:10.1016/j.geoderma.2014.01.012

    Article  Google Scholar 

  • Chacon N, Silver WL, Dubinsky EA, Cusack DF (2006) Iron reduction and soil phosphorus solubilization in humid tropical forest soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84. doi:10.1007/s10533-005-2343-3

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM et al (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497. doi:10.1038/17276

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P et al (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947. doi:10.1111/j.1461-0248.2011.01658.x

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The Iron Oxides: Structure, Properties, Reactions. Occurrences and Uses. John Wiley & Sons, Hoboken

    Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–235

    Article  Google Scholar 

  • Dubinsky EA, Silver WL, Firestone MK (2010) Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 91:2604–2612. doi:10.1890/09-1365.1

    Article  Google Scholar 

  • Fabris JD, de Jesus Filho MF, Coey JMD et al (1997) Iron-rich spinels from Brazilian soils. Hyperfine Interact 110:23–32. doi:10.1023/A:1012619331408

    Article  Google Scholar 

  • Gee G, Bauder J (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, Part 1, physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison, pp 383–411

    Google Scholar 

  • Ginn BR, Habteselassie MY, Meile C, Thompson A (2014) Effects of sample storage on microbial Fe-reduction in tropical rainforest soils. Soil Biol Biochem 68:44–51. doi:10.1016/j.soilbio.2013.09.012

    Article  Google Scholar 

  • Ginn B, Meile C, Wilmoth J et al (2017) Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ Sci Technol 51:3250–3259. doi:10.1021/acs.est.6b05709

    Article  Google Scholar 

  • Giovanoli R, Cornell RM (1992) Crystallization of metal substituted ferrihydrites. Z Für Pflanzenernähr Bodenkd 155:455–460. doi:10.1002/jpln.19921550517

    Article  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci 314:490–501. doi:10.1016/j.jcis.2007.04.062

    Article  Google Scholar 

  • Hall SJ, Silver WL (2015) Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry 125:149–165. doi:10.1007/s10533-015-0120-5

    Article  Google Scholar 

  • Hall SJ, McDowell WH, Silver WL (2013) When wet gets wetter: decoupling of moisture, redox biogeochemistry, and greenhouse gas fluxes in a humid tropical forest soil. Ecosystems 16:576–589. doi:10.1007/s10021-012-9631-2

    Article  Google Scholar 

  • Hall SJ, Treffkorn J, Silver WL (2014) Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. Ecology 95:2964–2973. doi:10.1890/13-2151.1

    Article  Google Scholar 

  • Hall SJ, Liptzin D, Buss HL et al (2016) Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130:177–190. doi:10.1007/s10533-016-0251-3

    Article  Google Scholar 

  • Henderson R, Kabengi N, Mantripragada N et al (2012) Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils. Environ Sci Technol 46:11727–11734. doi:10.1021/es302395r

    Article  Google Scholar 

  • Huang W, Hall SJ (2017) Optimized high-throughput methods for quantifying iron biogeochemical dynamics in soil. Geoderma 306:67–72. doi:10.1016/j.geoderma.2017.07.013

    Article  Google Scholar 

  • Jenny H, Leonard C (1934) Functional relationships between soil properties and rainfall. Soil Sci 38:363–381

    Article  Google Scholar 

  • Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499. doi:10.1007/s00442-002-1164-5

    Article  Google Scholar 

  • Johnson AH, Xing HX, Scatena FN (2015) Controls on soil carbon stocks in El Yunque National Forest, Puerto Rico. Soil Sci Soc Am J 79:294. doi:10.2136/sssaj2014.05.0199

    Article  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE et al (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43. doi:10.1111/j.1461-0248.2007.01124.x

    Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M et al (2015) Mineral–organic associations: formation, properties, and relevance in soil environments. In: Advances in agronomy. Elsevier, pp 1–140

  • Liptzin D, Silver WL (2009) Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biol Biochem 41:1696–1702

    Article  Google Scholar 

  • Liptzin D, Silver WL, Detto M (2011) Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems 14:171–182. doi:10.1007/s10021-010-9402-x

    Article  Google Scholar 

  • Lloyd J, Domingues TF, Schrodt F et al (2015) Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences 12:6529–6571. doi:10.5194/bg-12-6529-2015

    Article  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    Google Scholar 

  • Markewitz D, Davidson EA, de O Figueiredo R et al (2001) Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410:802–805. doi:10.1038/35071052

    Article  Google Scholar 

  • McBride MB (1978) Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by amorphous alumina. Soil Sci Soc Am J 42:27. doi:10.2136/sssaj1978.03615995004200010007x

    Article  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. In: Stewart BA (ed) Advances in Soil Science. Springer, New York, pp 1–56

    Google Scholar 

  • McDowell WH (1998) Internal nutrient fluxes in a Puerto Rican rain forest. J Trop Ecol 14:521–536

    Article  Google Scholar 

  • McDowell WH, Asbury CE (1994) Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol Oceanogr 39:111–125. doi:10.4319/lo.1994.39.1.0111

    Article  Google Scholar 

  • McDowell WH, Bowden WB, Asbury CE (1992) Riparian nitrogen dynamics in two geomorphologically distinct tropical rain forest watersheds: subsurface solute patterns. Biogeochemistry 18:53–75

    Article  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, pp 439–465

  • Pan W, Kan J, Inamdar S et al (2016) Dissimilatory microbial iron reduction release DOC (dissolved organic carbon) from carbon-ferrihydrite association. Soil Biol Biochem 103:232–240. doi:10.1016/j.soilbio.2016.08.026

    Article  Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652. doi:10.1016/j.gca.2005.03.045

    Article  Google Scholar 

  • Phillips IR, Greenway M (1998) Changes in water-soluble and exchangeable ions, cation exchange capacity, and phosphorus max in soils under alternating waterlogged and drying conditions. Commun Soil Sci Plant Anal 29:51–65. doi:10.1080/00103629809369928

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2014) nlme: linear and nonlinear mixed effects models

  • Porder S, Johnson AH, Xing HX et al (2015) Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249–250:100–110. doi:10.1016/j.geoderma.2015.03.002

    Article  Google Scholar 

  • Ramirez Romero G (1950) Exchangeable cations extracted by 0.1 N hydrochloric acid and ammonium acetate in soils of the Valle. Acta Agron 1:51–56

    Google Scholar 

  • Rietra RPJJ, Hiemstra T, van Riemsdijk WH (2001) Interaction between calcium and phosphate adsorption on goethite. Environ Sci Technol 35:3369–3374. doi:10.1021/es000210b

    Article  Google Scholar 

  • Russell AE, Hall SJ, Raich JW (2017) Tree species impact cation dynamics in a tropical rainforest: a new conceptual framework. Ecol Monogr. doi:10.1002/ecm.1274

    Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York

    Google Scholar 

  • Scatena FN, Lugo AE (1995) Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorphology 13:199–213. doi:10.1016/0169-555X(95)00021-V

    Article  Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25

    Article  Google Scholar 

  • Silver WL, Vogt KA (1993) Fine-root dynamics following single and multiple disturbances in a subtropical wet forest ecosystem. J Ecol 81:729–738

    Article  Google Scholar 

  • Silver WL, Scatena FN, Johnson AH et al (1994) Nutrient availability in a montane wet tropical forest—spatial patterns and methodological considerations. Plant Soil 164:129–145

    Article  Google Scholar 

  • Singh KD, Goulding KWT, Sinclair AH (1983) Assessment of potassium in soils. Commun Soil Sci Plant Anal 14:1015–1033. doi:10.1080/00103628309367429

    Article  Google Scholar 

  • Soil Survey Staff (2002) Soil survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico. United States Department of Agriculture, Natural Resources Conservation Service

  • Taylor RM, Graley AM (1967) The influence of ionic environment on the nature of iron oxides in soils. J Soil Sci 18:341–348. doi:10.1111/j.1365-2389.1967.tb01512.x

    Article  Google Scholar 

  • Thompson A, Chadwick OA, Boman S, Chorover J (2006) Colloid mobilization during soil iron redox oscillations. Environ Sci Technol 40:5743–5749. doi:10.1021/es061203b

    Article  Google Scholar 

  • Thompson A, Rancourt D, Chadwick O, Chorover J (2011) Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim Cosmochim Acta 75:119–133. doi:10.1016/j.gca.2010.10.005

    Article  Google Scholar 

  • Tishchenko V, Meile C, Scherer MM et al (2015) Fe2 + catalyzed iron atom exchange and re-crystallization in a tropical soil. Geochim Cosmochim Acta 148:191–202. doi:10.1016/j.gca.2014.09.018

    Article  Google Scholar 

  • Unger M, Leuschner C, Homeier J (2010) Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant Soil 336:443–458. doi:10.1007/s11104-010-0494-z

    Article  Google Scholar 

  • Vitousek P, Sanford R (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. doi:10.1016/0016-7061(76)90066-5

    Article  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N et al (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625. doi:10.1890/10-1558.1

    Article  Google Scholar 

  • Yi-Balan SA, Amundson R, Buss HL (2014) Decoupling of sulfur and nitrogen cycling due to biotic processes in a tropical rainforest. Geochim Cosmochim Acta 142:411–428. doi:10.1016/j.gca.2014.05.049

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant DEB-1457805, by the NSF Luquillo Critical Zone Observatory, and by Iowa State University. SJH gratefully acknowledges mentorship by W. Silver on related research at this site. We thank A. Russell for discussion about the conceptual model, S. Rathke and S. Bakshi for assistance with ICP analyses, the USFS International Institute of Tropical Forestry for logistical support, and O. Gutierrez del Arroyo for collecting soil for the incubation experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Hall.

Additional information

Responsible Editor: James Sickman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, S.J., Huang, W. Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils?. Biogeochemistry 136, 91–102 (2017). https://doi.org/10.1007/s10533-017-0383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0383-0

Keywords

Navigation