Skip to main content

Advertisement

Log in

Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Habitat modifications driven by human impact and climate change may influence species distribution, particularly in aquatic environments. Niche-based models are commonly used to evaluate the availability and suitability of habitat and assess the consequences of future climate scenarios on a species range and shifting edges of its distribution. Together with knowledge on biology and ecology, niche models also allow evaluating the potential of species to react to expected changes. The availability of projections of future climate scenarios allows comparing current and future niche distributions, assessing a species’ habitat suitability modification and shift, and consequently estimating potential species’ reaction. In this study, differences between the distribution maps of 406 marine species, which were produced by the AquaMaps niche models on current and future (year 2050) scenarios, were estimated and evaluated. Discrepancy measurements were used to identify a discrete number of categories, which represent different responses to climate change. Clustering analysis was then used to automatically detect these categories, demonstrating their reliability compared to human supervised classification. Finally, the distribution of characteristics like extinction risk (based on IUCN categories), taxonomic groups, population trends and habitat suitability change over the clustering categories was evaluated. In this assessment, direct human impact was neglected, in order to focus only on the consequences of environmental changes. Furthermore, in the comparison between two climate snapshots, the intermediate phases were assumed to be implicitly included into the model of the 2050 climate scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. www.aquamaps.org.

  2. http://www.fao.org/fishery/species/search/en.

  3. Also available at this public link: http://goo.gl/ZjjOkS.

  4. https://www.d4science.org/group/biodiversitylab/geo-visualisation.

  5. Also available at this public link: http://goo.gl/ZjjOkS.

References

  • Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17(5):1798–1808

    Article  Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688

    Article  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11(9):1504–1513

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res Oceans (1978–2012) 113(C8):15587–15600

  • Assunçaoa MD, Calheirosb RN, Bianchia S, Nettoa MA, Buyyab R (2013) Big Data computing and clouds: challenges, solutions, and future directions. arXiv:1312.4722

  • Barratt P, Cavanagh RD (2015) Heterodontus zebra in the IUCN red list of threatened species. Version 2014.3, www.iucnredlist.org

  • Bellwood D, Hughes T, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833

    Article  CAS  PubMed  Google Scholar 

  • Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  • Berry P, Dawson T, Harrison P, Pearson R (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11(6):453–462

    Article  Google Scholar 

  • BEST Commission (2003) The national invasive species strategy for the Bahamas. BEST, Nassau, The Bahamas 40

  • Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RH, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Skjoldborg Hansen A, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57(3):227–236

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19(14):R602–R614

    Article  CAS  PubMed  Google Scholar 

  • Campbell P (2008) Editorial on special issue on big data: community cleverness required. Nature 455(7209):1

    Article  Google Scholar 

  • Candela L, Castelli D, Coro G, Lelii L, Mangiacrapa F, Marioli V, Pagano P (2014) An infrastructure-oriented approach for supporting biodiversity research. Ecol Inform 26:162–172. doi:10.1016/j.ecoinf.2014.07.006

    Article  Google Scholar 

  • Cao D, Song L, Zhang Y, Lv K, Hu Z (2011) Environmental preferences of Alopias superciliosus and Alopias vulpinus in waters near Marshall Islands. N Z J Mar Freshw Res 45(1):103–119

    Article  CAS  Google Scholar 

  • Carlens H, Lydersen C, Krafft BA, Kovacs KM (2006) Spring haul-out behavior of ringed seals (Pusa hispida) in Kongsfjorden. Svalbard. Mar Mamm Sci 22(2):379–393

    Article  Google Scholar 

  • Castelli D, Michel J (2011) D4SCIENCE-II—data infrastructures ecosystem for science. Project final report. Data Infrastructures Ecosystem for Science. Deliverable DNA1.7

  • Castelli D, Taconet M, Garavelli S, Parker S (2013) iMarine infrastructure for data driven decision making and research: position paper. Presentation at the iMarine e-infrastructure Workshop for data-driven decision making and research, 14–15 May, Brussels, Belgium

  • Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10(3):235–251

    Article  Google Scholar 

  • Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16(1):24–35

    Article  Google Scholar 

  • Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68(6):1008–1018

    Article  Google Scholar 

  • Chin A, Kyne PM, Walker TI, McAULEY R (2010) An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob Change Biol 16(7):1936–1953

    Article  Google Scholar 

  • Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510

    Article  Google Scholar 

  • CNR T (2015) The gCube GeoExplorer. https://gcube.wiki.gcube-system.org/gcube/index.php/GeoExplorer

  • Cohen J et al (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

    Article  Google Scholar 

  • Coro G, Gioia A, Pagano P, Candela L (2013) A service for statistical analysis of marine data in a distributed e-infrastructure. Boll di Geofis Teorica e Appl 54(1):68–70

    Google Scholar 

  • Coro G, Pagano P, Ellenbroek A (2014) Comparing heterogeneous distribution maps for marine species. GISci Remote Sens 51(5):593–611

    Article  Google Scholar 

  • Coro G, Candela L, Pagano P, Italiano A, Liccardo L (2015) Parallelizing the execution of native data mining algorithms for computational biology. Concurr Comput Pract Exp 27(17):4630–4644. doi:10.1002/cpe.3435

    Article  Google Scholar 

  • Corsi F, de Leeuw J, Skidmore A (2000) Modeling species distribution with GIS. Research Techniques in Animal Ecology, Columbia University Press, New York, pp 389–434

  • Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19(3):883–899

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58

    Article  CAS  PubMed  Google Scholar 

  • de La Beaujardière J (2004) OGC Web Map Service Interface, version 1.3.0. Open Geospatial Consortium

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45(4):1029–1039

    Article  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 151–176

    Chapter  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231

  • FAO (2015) Fact sheets. http://www.fao.org/newsroom/en/facts/index.html

  • Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378

    Article  Google Scholar 

  • GCube (2015) The GCube Featherweight Stack. http://gcube.wiki.gcube-system.org/gcube/index.php/Featherweight_Stack

  • Genner MJ, Sims DW, Wearmouth VJ, Southall EJ, Southward AJ, Henderson PA, Hawkins SJ (2004) Regional climatic warming drives long-term community changes of British marine fish. Proc R Soc Lond Ser B Biol Sci 271(1539):655–661

    Article  Google Scholar 

  • Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol Appl 20(2):452–464

    Article  PubMed  Google Scholar 

  • Heino M, Engelhard GH, Godo OR (2008) Migrations and hydrography determine the abundance fluctuations of blue whiting (Micromesistius poutassou) in the Barents Sea. Fish Oceanogr 17(2):153–163

    Article  Google Scholar 

  • Hey AJ, Tansley S, Tolle KM et al (2009) The fourth paradigm: data-intensive scientific discovery, vol 1. Microsoft Research Redmond, WA

    Google Scholar 

  • Hiddink J, Ter Hofstede R (2008) Climate induced increases in species richness of marine fishes. Glob Change Biol 14(3):453–460

    Article  Google Scholar 

  • Hsieh CH, Kim HJ, Watson W, Di Lorenzo E, Sugihara G (2009) Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob Change Biol 15(9):2137–2152

    Article  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evolut 20(7):380–386

    Article  Google Scholar 

  • Hyrenbach KD, Veit RR (2003) Ocean warming and seabird communities of the southern California Current System (1987–98): response at multiple temporal scales. Deep Sea Res Part II Top Stud Oceanogr 50(14):2537–2565

    Article  Google Scholar 

  • IUCN (2015) The IUCN Red List of species. www.iucnredlist.org

  • Jordà G, Marbà N, Duarte CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Change 2(11):821–824

    Article  Google Scholar 

  • Kaschner K, Watson R, Trites A, Pauly D (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310

    Article  Google Scholar 

  • Knights B (2003) A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. Sci Total Environ 310(1):237–244

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19(1):103–132

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 1:159–174

    Article  Google Scholar 

  • Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over europe, north africa and the middle east. Glob Change Biol 15(5):1072–1089

    Article  Google Scholar 

  • Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the Great Barrier Reef to climate change. http://hdl.handle.net/11017/548

  • Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27–32

    Article  Google Scholar 

  • MacLeod CD (2009) Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger Species Res 7(2):125–136

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. California, USA, pp 281–297

  • Marzec RJ, Kim Y, Powell EN (2010) Geographical trends in weight and condition index of surfclams (Spisula solidissima) in the Mid-Atlantic Bight. J Shellfish Res 29(1):117–128

    Article  Google Scholar 

  • Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18(2):309–320

    Article  PubMed  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Special report on emissions scenarios, In: Nakicenovic N, Swart R (ed) pp 612 ISBN 0521804930, Cambridge University Press, Cambridge, UK, 1 July 2000

  • Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evolut Syst 1:637–669

    Article  Google Scholar 

  • Pearson RG (2012) Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://ncep.amnh.org

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: ICML, pp 727–734

  • Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22(8):933–941

    Article  PubMed Central  PubMed  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308(5730):1912–1915

    Article  CAS  PubMed  Google Scholar 

  • Ready J, Kaschner K, South AB, Eastwood PD, Rees T, Rius J, Agbayani E, Kullander S, Froese R (2010) Predicting the distributions of marine organisms at the global scale. Ecol Model 221(3):467–478. doi:10.1016/j.ecolmodel.2009.10.025

    Article  Google Scholar 

  • Reyes K (2015) AquaMaps: algorithm and data sources for aquatic organisms. http://www.aquamaps.org/main/FB_Book_KReyes_AquaMaps_JG.pdf

  • Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B et al (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Max-Planck-Institut für Meteorologie, Hamburg

    Google Scholar 

  • Sardella BA, Sanmarti E, Kültz D (2008) The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. J Exp Zool Part A Ecol Genet Physiol 309(8):477–483

    Article  Google Scholar 

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4:39–61

    Article  PubMed  Google Scholar 

  • Sorvari S, Brus M (2012) ENVRI—overcoming the environmental challenges with common solutions. EPOS newsletter, February

  • Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2(9):686–690

    Article  Google Scholar 

  • Sydeman W, García-Reyes M, Schoeman D, Rykaczewski R, Thompson S, Black B, Bograd S (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science 345(6192):77–80

    Article  CAS  PubMed  Google Scholar 

  • Thompson KF, Millar CD, Baker CS, Dalebout M, Steel D, van Helden AL, Constantine R (2013) A novel conservation approach provides insights into the management of rare cetaceans. Biol Conserv 157:331–340

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10(12):2020–2027

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzeng WN, Tseng YH, Han YS, Hsu CC, Chang CW, Di Lorenzo E, Hsieh Ch (2012) Evaluation of multi-scale climate effects on annual recruitment levels of the Japanese eel, Anguilla japonica, to Taiwan. PLoS One 7(2):e30,805

  • Waldrop MM (2008) Science 2.0. Sci Am 298(5):68–73

    Article  PubMed  Google Scholar 

  • Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17(2):1235–1249

    Article  Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci 105(48):18,848–18,853

Download references

Acknowledgments

The reported work has been partially supported by the i-Marine project (FP7 of the European Commission, INFRASTRUCTURES-2011-2, Contract No. 283644) and by the Giovanisi project of the Presidency of the Tuscan Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Coro.

Additional information

Handling Editor: Pierre Dutilleul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coro, G., Magliozzi, C., Ellenbroek, A. et al. Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model. Environ Ecol Stat 23, 155–180 (2016). https://doi.org/10.1007/s10651-015-0333-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-015-0333-8

Keywords

Navigation