Skip to main content

Advertisement

Log in

Sulfate reduction in groundwater: characterization and applications for remediation

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aravena, R., & Mayer, B. (2009). Isotopes and processes in the nitrogen and sulfur cycles. In C. M. Aelion, P. Höhener, D. Hunkeler, & R. Aravena (Eds.), Environmental isotopes in biodegradation and bioremediation (pp. 203–246). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Aravena, R., & Robertson, W. D. (1998). Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6), 975–982.

    Article  CAS  Google Scholar 

  • Barton, L. L., & Tomei, F. A. (1995). Characteristics and activities of sulfate-reducing bacteria. In L. L. Barton (Ed.), Sulfate reducing bacteria (pp. 1–32). New York: Springer.

    Google Scholar 

  • Benner, S. G., Blowes, D. W., & Ptacek, C. J. (1997). A full-scale porous reactive wall for prevention of acid mine drainage. Ground Water Monitoring and Remediation, 17(4), 99–107.

    Article  CAS  Google Scholar 

  • Bennett, P., He, F., Zhao, D. Y., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116(1–4), 35–46.

    Article  CAS  Google Scholar 

  • Berner, Z. A., Stuben, D., Leosson, M. A., & Klinge, H. (2002). S- and O-isotopic character of dissolved sulphate in the cover rock aquifers of a Zechstein salt dome. Applied Geochemistry, 17(12), 1515–1528.

    Article  CAS  Google Scholar 

  • Beyenal, H., & Lewandowski, Z. (2004). Dynamics of lead immobilization in sulfate reducing biofilms. Water Research, 38(11), 2726–2736.

    Article  CAS  Google Scholar 

  • Bilek, F. (2006). Column tests to enhance sulphide precipitation with liquid organic electron donators to remediate AMD-influenced groundwater. Environmental Geology, 49(5), 674–683.

    Article  CAS  Google Scholar 

  • Bilek, F., & Wagner, S. (2009). Testing in situ sulfate reduction by H2 injection in a bench-scale column experiment. Water, Air, and Soil pollution, 203(1–4), 109–122.

    Article  CAS  Google Scholar 

  • Bolliger, C., Schroth, M. H., Bernasconi, S. M., Kleikemper, J., & Zeyer, J. (2001). Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochimica et Cosmochimica Acta, 65(19), 3289–3298.

    Article  CAS  Google Scholar 

  • Borden, A. K., Brusseau, M. L., Carroll, K. C., McMillan, A., Akyol, N. H., Berkompas, J., Miao, Z., Jordan, F., Tick, G., Waugh, W. J., & Glenn, E. P. (2011). Ethanol addition for enhancing denitrification at the uranium mill tailing site in Monument Valley, AZ. Water, Air, Soil Pollution. doi:10.1007/s11270-011-0899-1.

  • Bottrell, S. H., Smart, P. L., Whitaker, F., & Raiswell, R. (1991). Geochemistry and isotope systematics of sulfur in the mixing zone of Bahamian blue holes. Applied Geochemistry, 6(1), 97–103.

    Article  CAS  Google Scholar 

  • Burghardt, D., Simon, E., Knoller, K., & Kassahun, A. (2007). Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction. Journal of Contaminant Hydrology, 94(3–4), 305–314.

    Article  CAS  Google Scholar 

  • Canfield, D. E. (2001a). Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry, 43(1), 607–636.

    Google Scholar 

  • Canfield, D. E. (2001b). Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65(7), 1117–1124.

    Article  CAS  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Wietsma, T. W. (1995). Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42(2), 201–212.

    Article  CAS  Google Scholar 

  • Carreon-Diazconti, C., Santamaria, J., Berkompas, J., Field, J. A., & Brusseau, M. L. (2009). Assessment of in situ reductive dechlorination using compound-specific stable isotopes, functional gene PCR, and geochemical data. Environmental Science and Technology, 43(12), 4301–4307.

    Article  CAS  Google Scholar 

  • Carroll, K. C., Jordan, F. L., Glenn, E. P., Waugh, W. J., & Brusseau, M. L. (2009). Comparison of nitrate attenuation characterization methods at the Uranium mill tailing site in Monument Valley, Arizona. Journal of Hydrology, 378(1–2), 72–81.

    Article  CAS  Google Scholar 

  • Chambers, L. A., & Trudinger, P. A. (1979). Microbiological fractionation of stable sulfur isotopes—review and critique. Geomicrobiology Journal, 1(3), 249–293.

    Article  CAS  Google Scholar 

  • Chang, Y. J., Peacock, A. D., Long, P. E., Stephen, J. R., McKinley, J. P., Macnaughton, S. J., et al. (2001). Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Applied and Environmental Microbiology, 67(7), 3149–3160.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., Bradley, P. M., Lovley, D. R., & Vroblesky, D. A. (1996). Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water, 34(4), 691–698.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H. J. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45(3–4), 165–241.

    Article  CAS  Google Scholar 

  • Church, C. D., Wilkin, R. T., Alpers, C. N., Rye, R. O., & McCleskey, R. B. (2007). Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochemical Transactions, 8(10), 1–14.

    Google Scholar 

  • Cunningham, J. A., Hopkins, G. D., Lebron, C. A., & Reinhard, M. (2000). Enhanced anaerobic bioremediation of groundwater contaminated by fuel hydrocarbons at Seal Beach, California. Biodegradation, 11(2–3), 159–170.

    Article  CAS  Google Scholar 

  • Della Rocca, C., Belgiorno, V., & Meric, S. (2007). Overview of in situ applicable nitrate removal processes. Desalination, 204(1–3), 46–62.

    Article  CAS  Google Scholar 

  • Detmers, J., Schulte, U., Strauss, H., & Kuever, J. (2001). Sulfate reduction at a lignite seam: Microbial abundance and activity. Microbial Ecology, 42(3), 238–247.

    Article  CAS  Google Scholar 

  • Diels, L., Geets, J., Dejonghe, W., Van Roy, S., Vanbroekhoven, K., Szewczyk, A., et al. (2005) Heavy metal immobilization in groundwater by in situ bioprecipitation: Comments and questions about carbon source use, efficiency and sustainability of the process. In 9th international mine water congress in Oviedo, 2005 (pp. 355–360).

  • Dogramaci, S. S., Herczeg, A. L., Schiff, S. L., & Bone, Y. (2001). Controls on delta S-34 and delta O-18 of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Applied Geochemistry, 16(4), 475–488.

    Article  CAS  Google Scholar 

  • Einsiedl, F., & Mayer, B. (2005). Sources and processes affecting sulfate in a karstic groundwater system of the Franconian Alb, southern Germany. Environmental Science and Technology, 39(18), 7118–7125.

    Article  CAS  Google Scholar 

  • El Bayoumy, M., Bewtra, J. K., Ali, H. I., & Biswas, T. (1999). Removal of heavy metals and cod by SRB in UAFF reactor. Journal of Environmental Engineering-Asce, 125(6), 532–539.

    Article  CAS  Google Scholar 

  • Eljamal, O., Jinno, K., & Hosokawa, T. (2009). Modeling of solute transport and biological sulfate reduction using low cost electron donor. Environmental Geology, 56(8), 1605–1613.

    Article  CAS  Google Scholar 

  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science and Technology, 35(24), 4922–4926.

    Article  CAS  Google Scholar 

  • Elsner, M., Couloume, G. L., Mancini, S., Burns, L., & Lollar, B. S. (2010). Carbon isotope analysis to evaluate nanoscale Fe(O) treatment at a chlorohydrocarbon contaminated site. Ground Water Monitoring and Remediation, 30(3), 79–95.

    Article  CAS  Google Scholar 

  • Englert, A., Hubbard, S. S., Williams, K. H., Li, L., & Steefel, C. I. (2009). Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations. Environmental Science and Technology, 43(14), 5197–5204.

    Article  CAS  Google Scholar 

  • EPA. (1999). Health effects from exposure to high levels of sulfate in drinking water study. USA: US Environmental Protection Agency. EPA 815-R-99-001, Washington. DC.

  • EPA. (2009). National secondary drinking water regulation. USA: US Environmental Protection Agency. EPA 816-F-09-004, Washington, DC.

  • EPA website. Sulfate in drinking water. US Environmental Protection Agency. http://www.epa.gov/safewater/contaminants/unregulated/sulfate.html.

  • Fortin, D., Rioux, J. P., & Roy, M. (2002). Geochemistry of iron and sulfur in the zone of microbial sulfate reduction in mine tailings. Water, Air & Soil Pollution: Focus, 2(3), 37–56.

    Article  CAS  Google Scholar 

  • Garcia-Saucedo, C., Fernandez, F. J., Buitron, G., Cuervo-Lopez, F. M., & Gomez, J. (2008). Effect of loading rate on TOC consumption efficiency in a sulfate reducing process: Sulfide effect in batch culture. Journal of Chemical Technology and Biotechnology, 83(12), 1648–1657.

    Article  CAS  Google Scholar 

  • Gibert, O., de Pablo, J., Cortina, J. L., & Ayora, C. (2002). Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments. Reviews in Environmental Science and Biotechnology, 1(4), 327–333.

    Article  CAS  Google Scholar 

  • Gibson, G. R. (1990). Physiology and ecology of the sulphate-reducing bacteria. Journal of Applied Microbiology, 69, 769–797.

    Article  CAS  Google Scholar 

  • Glombitza, F. (2001). Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Management, 21(2), 197–203.

    Article  CAS  Google Scholar 

  • Hao, O. J., Chen, J. M., Huang, L., & Buglass, R. L. (1996). Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology, 26(2), 155–187.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. Y. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science and Technology, 39(9), 3314–3320.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. Y. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science and Technology, 41(17), 6216–6221.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D. Y., Liu, J. C., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46(1), 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D. Y., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. US Geological Survey Water-Supply Paper 2254.

  • Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation Journal, 16(2), 57–77.

    Article  Google Scholar 

  • Hwang, C. C., Wu, W. M., Gentry, T. J., Carley, J., Corbin, G. A., Carroll, S. L., et al. (2009). Bacterial community succession during in situ uranium bioremediation: Spatial similarities along controlled flow paths. Isme Journal, 3(1), 47–64.

    Article  CAS  Google Scholar 

  • Istok, J. D., Senko, J. M., Krumholz, L. R., Watson, D., Bogle, M. A., Peacock, A., et al. (2004). In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environmental Science and Technology, 38(2), 468–475.

    Article  CAS  Google Scholar 

  • Jakobsen, R., & Postma, D. (1994). In situ rates of sulfate reduction in an aquifer (Romo, Denmark) and implications for the reactivity of organic-matter. Geology, 22(12), 1103–1106.

    Article  CAS  Google Scholar 

  • Janssen, G., & Temminghoff, E. J. M. (2004). In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction. Environmental Science and Technology, 38(14), 4002–4011.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2002). Pitfalls of passive mine water treatment. Reviews in Environmental Science and Biotechnology, 1(4), 335–343.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review. Science of the Total Environment, 338(1–2), 3–14.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Thoms, R. B., Johnson, R. O., Nurmi, J. T., & Tratnyek, P. G. (2008). Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier. Ground Water Monitoring and Remediation, 28(3), 56–64.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science and Technology, 39(5), 1291–1298.

    Article  CAS  Google Scholar 

  • Kaplan, I. R., & Rittenberg, S. C. (1964). Microbiological fractionation of sulphur isotopes. Journal of General Microbiology, 34(2), 195–212.

    CAS  Google Scholar 

  • Karri, S., Sierra-Alvarez, R., & Field, J. A. (2005). Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering, 92(7), 810–819.

    Article  CAS  Google Scholar 

  • Kelly, S. D., Kemner, K. M., Carley, J., Criddle, C., Jardine, P. M., Marsh, T. L., et al. (2008). Speciation of uranium in sediments before and after in situ biostimulation. Environmental Science and Technology, 42(5), 1558–1564.

    Article  CAS  Google Scholar 

  • Kleikemper, J., Schroth, M. H., Bernasconi, S. M., Brunner, B., & Zeyer, J. (2004). Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources. Geochimica et Cosmochimica Acta, 68(23), 4891–4904.

    Article  CAS  Google Scholar 

  • Koschorreck, M. (2008). Microbial sulphate reduction at a low pH. Fems Microbiology Ecology, 64(3), 329–342.

    Article  CAS  Google Scholar 

  • Krouse, H. R., & Mayer, B. (1999). Sulfur and oxygen isotopes in sulphate. In P. G. Cook & A. L. Herczeg (Eds.), Environmental tracers in subsurface hydrology (pp. 195–231). Boston: Kluwer.

    Google Scholar 

  • Lackovic, J. A., Nikolaidis, N. P., & Dobbs, G. M. (2000). Inorganic arsenic removal by zero-valent iron. Environmental Engineering Science, 17(1), 29–39.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Li, L., Fan, M. H., Brown, R. C., Van Leeuwen, J. H., Wang, J. J., Wang, W. H., et al. (2006). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36(5), 405–431.

    Article  CAS  Google Scholar 

  • Li, X. Q., Zhou, A. G., Liu, C. F., Cai, H. S., Wu, J. B., Gan, Y. Q., et al. (2008). 34S and 18O isotopic evolution of residual sulfate in groundwater of the Hebei plain. Diqiu Xuebao/Acta Geoscientica Sinica, 29(6), 745–751.

    CAS  Google Scholar 

  • Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452–463.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Coates, J. D., Woodward, J. C., & Phillips, E. J. P. (1995). Benzene oxidation coupled to sulfate reduction. Applied and Environmental Microbiology, 61(3), 953–958.

    CAS  Google Scholar 

  • Ludwig, R. D., Smyth, D. J. A., Blowes, D. W., Spink, L. E., Wilkin, R. T., Jewett, D. G., et al. (2009). Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environmental Science and Technology, 43(6), 1970–1976.

    Article  CAS  Google Scholar 

  • McGuire, J. T., Long, D. T., Klug, M. J., Haack, S. K., & Hyndman, D. W. (2002). Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer. Environmental Science and Technology, 36(12), 2693–2700.

    Article  CAS  Google Scholar 

  • MDH. (2008). Sulfate in well water. Minnesota Department of Health, Well Management Section, Environmental Health Division, St. Paul, MN.

  • Meulepas, R., Stams, A., & Lens, P. (2010). Biotechnological aspects of sulfate reduction with methane as electron donor. Reviews in Environmental Science and Biotechnology, 9(1), 59–78.

    Article  CAS  Google Scholar 

  • Moon, H. S., Komlos, J., & Jaffe, P. R. (2009). Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO4 2− reduction. Journal of Contaminant Hydrology, 105(1–2), 18–27.

    Article  CAS  Google Scholar 

  • Nijenhuis, I., Nikolausz, M., Koth, A., Felfoldi, T., Weiss, H., Drangmeister, J., et al. (2007). Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere, 67(2), 300–311.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science and Technology, 34(12), 2564–2569.

    Article  CAS  Google Scholar 

  • Praharaj, T., & Fortin, D. (2008). Seasonal variations of microbial sulfate and iron reduction in alkaline Pb-Zn mine tailings (Ontario, Canada). Applied Geochemistry, 23(12), 3728–3740.

    Article  CAS  Google Scholar 

  • Prommer, H., Grassi, M. E., Davis, A. C., & Patterson, B. M. (2007). Modeling of microbial dynamics and geochemical changes in a metal bioprecipitation experiment. Environmental Science and Technology, 41(24), 8433–8438.

    Article  CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., et al. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science and Technology, 39(5), 1309–1318.

    Article  CAS  Google Scholar 

  • Robertson, W. D., Cherry, J. A., & Schiff, S. L. (1989). Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resources Research, 25(6), 1111–1123.

    Article  CAS  Google Scholar 

  • Robertson, W. D., & Schiff, S. L. (1994). Fractionation of sulfur isotopes during biogenic sulfate reduction below a sandy forested recharged area in south-central Canada. Journal of Hydrology, 158(1–2), 123–134.

    Article  CAS  Google Scholar 

  • Runnells, D. D., & Wahli, C. (1993). Insitu electromigration as a method for removing sulfate, metals, and other contaminants from ground-water. Ground Water Monitoring and Remediation, 13(1), 121–129.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., et al. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.

    Article  CAS  Google Scholar 

  • Schols, E., Swennen, R., Smolders, E., Diels, L., B., L., & Vanbroekhoven, K. (2008) Stability of metal precipitation formed during immobilization of metals from polluted groundwater by means of in situ precipitation. In UFZ/TNO international conference on soilwater systems, Milano, Italy. 3–6 June 2008.

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193.

    Article  CAS  Google Scholar 

  • Schroth, M. H., Kleikemper, J., Bolliger, C., Bernasconi, S. M., & Zeyer, J. (2001). In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. Journal of Contaminant Hydrology, 51(3–4), 179–195.

    Article  CAS  Google Scholar 

  • Seller, L. E., & Canter, L. W. (1980). Sulfates in surface and ground water. Norman, Oklahoma: National Center for Ground Water Research.

    Google Scholar 

  • Smith, R. L., & Klug, M. J. (1981). Electron-donors utilized by sulfate-reducing bacteria in eutrophic lake-sediments. Applied and Environmental Microbiology, 42(1), 116–121.

    CAS  Google Scholar 

  • Spence, M. J., Bottrell, S. H., Thornton, S. F., & Lerner, D. N. (2001). Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer. Journal of Contaminant Hydrology, 53(3–4), 285–304.

    Article  CAS  Google Scholar 

  • Sracek, O., Choquette, M., Gelinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. Journal of Contaminant Hydrology, 69(1–2), 45–71.

    Article  CAS  Google Scholar 

  • Strebel, O., Bottcher, J., & Fritz, P. (1990). Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. Journal of Hydrology, 121(1–4), 155–172.

    Article  CAS  Google Scholar 

  • Taylor, B. E., Wheeler, M. C., & Nordstrom, D. K. (1984). Isotope composition of sulfate in acid-mine drainage as measure of bacterial oxidation. Nature, 308(5959), 538–541.

    Article  CAS  Google Scholar 

  • USDA. (1993). Acid drainage from mines on the National Forest: A management challenge. US Forest Service Publication (1505), 1–12.

  • USFS. (2005). Distribution of abandoned and inactive mines on National Forest System Lands. RMRS Publications: RM General Technical Reports (GTR).

  • Vanbroekhoven, K., Satyawali, Y., Roy, S. V., Vangeel, S., Gemoets, J., Muguet, S., et al. (2009) Stability of metal precipitates formed after in situ bioprecipitation induced by sulfidogenesis. In Tenth international in situ and on-site bioremediation symposium, Baltimore, MD, May 58 2009 (Vol. Paper A-04). Columbus, OH: Battelle Memorial Institute.

  • Vanbroekhoven, K., Van Roy, S., Diels, L., Gemoets, J., Verkaeren, P., Zeuwts, L., et al. (2008). Sustainable approach for the immobilization of metals in the saturated zone: In situ bioprecipitation. Hydrometallurgy, 94(1–4), 110–115.

    Article  CAS  Google Scholar 

  • Wargin, A., Olanczuk-Neyman, K., & Skucha, M. (2007). Sulphate-reducing bacteria, their properties and methods of elimination from groundwater. Polish Journal of Environmental Studies, 16(4), 639–644.

    CAS  Google Scholar 

  • Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44(1), 131–140.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., Su, C. M., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environmental Science and Technology, 39(12), 4599–4605.

    Article  CAS  Google Scholar 

  • Wilkins, M. J., VerBerkmoes, N. C., Williams, K. H., Callister, S. J., Mouser, P. J., Elifantz, H., et al. (2009). Proteogenomic monitoring of geobacter physiology during stimulated uranium bioremediation. Applied and Environmental Microbiology, 75(20), 6591–6599.

    Article  CAS  Google Scholar 

  • Williams, K. H., Kemna, A., Wilkins, M. J., Druhan, J., Arntzen, E., N’Guessan, A. L., et al. (2009). Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science and Technology, 43(17), 6717–6723.

    Article  CAS  Google Scholar 

  • Winch, S., Mills, H. J., Kostka, J. E., Fortin, D., & Lean, D. R. S. (2009). Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. Fems Microbiology Ecology, 68(1), 94–107.

    Article  CAS  Google Scholar 

  • Wu, W. M., Carley, J., Gentry, T., Ginder-Vogel, M. A., Fienen, M., Mehlhorn, T., et al. (2006). Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environmental Science and Technology, 40(12), 3986–3995.

    Article  CAS  Google Scholar 

  • Wu, W. M., Carley, J., Luo, J., Ginder-Vogel, M. A., Cardenas, E., Leigh, M. B., et al. (2007). In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science and Technology, 41(16), 5716–5723.

    Article  CAS  Google Scholar 

  • Xu, M. Y., Wu, W. M., Wu, L. Y., He, Z. L., Van Nostrand, J. D., Deng, Y., et al. (2010). Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. Isme Journal, 4(8), 1060–1070.

    Article  Google Scholar 

  • Yang, G. C. C., Hung, C. H., & Tu, H. C. (2008). Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 43(8), 945–951.

    Article  CAS  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5(3–4), 323–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Arizona TRIF Water Sustainability Program through the Center for Environmentally Sustainable Mining, Schlumberger Inc., and the NIEHS Superfund Research Program (P42 ES04940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Brusseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Z., Brusseau, M.L., Carroll, K.C. et al. Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34, 539–550 (2012). https://doi.org/10.1007/s10653-011-9423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9423-1

Keywords

Navigation