Skip to main content
Log in

Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365–488 (69.5 ± 117)] µg L−1 than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14–232 (22.6 ± 41.1)] µg L−1. Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3 2− (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Rimawi, F., Kanan, K., & Qutob, M. (2013). Analysis of different rare metals, rare earth elements, and other common metals in groundwater of South West Bank/Palestine by ICP/MS-Data and health aspects. Journal of Environmental Protection, 4, 1157–1164.

    Article  Google Scholar 

  • American Public Health Association (APHA). (1998). Standard methods for the examination of water and waste water (19th ed.). Washington, DC: APHA, AWWA, WEF.

    Google Scholar 

  • Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.

    Article  CAS  Google Scholar 

  • Ayedun, H. (2012). Groundwater contamination by metals, trace and rare-earth elements from basement and sedimentary areas of Ogun and Lagos State, Nigeria. Ph.D. Thesis (pp. 248–284). Abeokuta: Federal University of Agriculture.

  • Ayedun, H., Gbadebo, A. M., Idowu, O. A., & Arowolo, T. A. (2015). Toxic elements in groundwater of Lagos and Ogun States, Southwest, Nigeria and their human health risk assessment. Environmental Monitoring and Assessment, 187(6), 351. doi:10.1007/s10661-015-4319-7.

    Article  CAS  Google Scholar 

  • Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxy-hydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1), 67–77.

    Article  CAS  Google Scholar 

  • Biddau, R., Bensimon, M., Cidu, R., & Parriaux, A. (2009). Rare earth elements in groundwater from different Alpine aquifers. Chemie der Erde-Geochemistry, 69, 327–339.

    Article  CAS  Google Scholar 

  • Biddau, R., Cidu, R., & Frau, F. (2002). Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy. Chemical Geology, 182, 1–14.

    Article  CAS  Google Scholar 

  • Binnemans, K., Jones, P. T., Bart Blanpain, B., Tom Van Gerven, T., Yang, Y., Allan Walton, A., & Matthias Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22.

    Article  CAS  Google Scholar 

  • Braun, J. J., Viers, J., Dupré, B., Polve, M., Ndam, J., & Muller, J. P. (1998). Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 62, 273–299.

    Article  CAS  Google Scholar 

  • Brookins, D. G. (1989). Aqueous geochemistry of rare earth elements. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements (pp. 201–225). Washington, DC: Mineralogical Society of America.

    Google Scholar 

  • Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1), 3–33.

    Article  CAS  Google Scholar 

  • Buschow, K. H. J. (1994). Trends in rare-earth permanent-magnets. IEEE Transactions on Magnetics, 30, 565–570.

    Article  CAS  Google Scholar 

  • Byrne, R. H., Liu, X., & Schijf, J. (1996). The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochimica et Cosmochimica Acta, 60(17), 3341–3346.

    Article  CAS  Google Scholar 

  • Censi, P., Tamburo, E., Speziale, S., Zuddas, P., Randazzo, L. A., Punturo, R., et al. (2011). Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout. Journal of Hazardous Materials, 186, 1103–1110.

    Article  CAS  Google Scholar 

  • Dia, A., Gruau, G., Olivie-Lauquet, G., Riou, C., Molenat, J., & Curmi, P. (2000). The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochimica et Cosmochimica Acta, 64, 4131–4151.

    Article  CAS  Google Scholar 

  • Emmanuel, B. E., & Chukwu, L. O. (2010). Spatial distribution of saline water and possible sources of intrusion into a tropical freshwater lagoon and the transitional effects on the lacustrine ichthyofaunal diversity. African Journal of Environmental Science and Technology, 4(7), 480–491.

    CAS  Google Scholar 

  • Emsley, J. (2001). Nature’s building blocks: An A–Z guide to the elements (p. 125). Oxford: Oxford University Press.

    Google Scholar 

  • Evans, C. H. (1990). Biogeochemistry of the lanthanides (pp. 8–44). New York: Plenum Press.

    Book  Google Scholar 

  • Falkner, K. K., Klinkhammer, G. P., Ungerer, C. A., & Christie, D. M. (1995). Inductively coupled plasma mass spectrometry in geochemistry. Annual Review of Earth and Planetary Sciences, 23(1), 409–449.

    Article  CAS  Google Scholar 

  • Fan, G. Q., Yuan, Z. K., Zheng, H. L., & Liu, Z. J. (2004). Study on the effects of exposure to rare earth elements and health-responses in children aged 7–10 years. Journal of Hygiene Research, 33, 23–28.

    Google Scholar 

  • Gao, L., Kano, N., Sato, Y., Li, C., Zhang, S., & Imaizumi, H. (2012). Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application. Bioinorganic Chemistry and Applications,. doi:10.1155/2012/173819.

    Google Scholar 

  • German, C. R., Masuzawa, T., Greaves, M. J., Elderfield, H., & Edmond, J. M. (1995). Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography. Geochimica et Cosmochimica Acta, 59(8), 1551–1558.

    Article  CAS  Google Scholar 

  • Goering, P. L., Fisher, B. R., & Fowler, B. A. (1991). The lanthanides. In E. Merien (Ed.), Metals and their compounds in the environment: occurrence, analysis and biological relevance (pp. 959–970). Weinheim: VCH.

    Google Scholar 

  • Gomez-Aracena, J., & Riemersma, R. A. (2006). Toenail cerium levels and risk of a first acute myocardial infarction. The Euramic and heavy metals study. Chemosphere, 64(1), 112–120.

    Article  CAS  Google Scholar 

  • Gruau, G., Dia, A., Olivie-Lauquet, G., Davranche, M., & Pinay, G. (2004). Controls on the distribution of rare earth elements in shallow groundwaters. Water Research, 38, 3576–3586.

    Article  CAS  Google Scholar 

  • Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270, 117–125.

    Article  CAS  Google Scholar 

  • Gutfleisch, O., Willard, M. A., Bruck, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Advanced Materials, 23, 821–842.

    Article  CAS  Google Scholar 

  • Hirano, S., & Suzuki, K. T. (1996). Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 104(1), 85–95.

    Article  CAS  Google Scholar 

  • Hu, Z., Richter, H., Sparovek, G., & Schnug, E. (2004). Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. Journal of Plant Nutrition, 27, 183–220.

    Article  CAS  Google Scholar 

  • Janssen, R. P., & Verweij, W. (2003). Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Research, 37(6), 1320–1350.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Chevis, D. A., Burdige, D. J., Cable, J. E., Martin, J. B., & Roy, M. (2011). Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA. Geochimica et Cosmochimica Acta, 75(3), 825–843.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Hawkins, D. L., & Cortes, A. (2006). Do Archean chemical sediments record ancient seawater rare earth element patterns? Geochimica et Cosmochimica Acta, 70, 871–890.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Stetzenbach, K. J., & Hodge, V. F. (1997). Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimica et Cosmochimica Acta, 61, 3605–3618.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Zhou, X., Guo, C., Stetzenbach, K. J., & Hodge, V. F. (2000). Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164, 239–257.

    Article  CAS  Google Scholar 

  • Johnson, K. S., Coale, K. H., & Jannasch, H. W. (1992). Analytical chemistry in oceanography. Analytical Chemistry, 64, 1065A–1075A.

    Article  CAS  Google Scholar 

  • Kehinde-Phillips, O. (1990). Geology of Ogun State. In S. O. Onakomaiya, K. Oyesiku, & J. Jegede (Eds.), Ogun state in maps (pp. 12–13). Ibadan: Rex Charles Publication.

    Google Scholar 

  • Kim, I., & Kim, G. (2011). Large fluxes of rare earth elements through submarine groundwater discharge (SGD) from a volcanic Island, Jeju Korea. Marine Chemistry, 127, 12–19.

    Article  CAS  Google Scholar 

  • Kralj, P., & Kralj, P. (2009). Rare earth elements in thermal water from the Sob-1 well, Murska Sobota, NE Slovenia. Environmental Earth Sciences, 59, 5–13.

    Article  CAS  Google Scholar 

  • Kramer, K. J. M., Dorten, W. S., van het Groenewoud, H., de Haan, E., Kramer, G. N., Monteiro, L., et al. (1999). Collaborative study to improve the quality control of rare earth element determinations in environmental matrices. Journal of Environmental Monitoring, 1, 83–89.

    Article  Google Scholar 

  • Kulaksiz, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50.

    Article  CAS  Google Scholar 

  • Lee, S. G., Kim, Y., Chae, B. G., Koh, D. C., & Kim, K. H. (2004). The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Applied Geochemistry, 19, 1711–1725.

    Article  CAS  Google Scholar 

  • Lee, Y., Kim, G., Lim, W., & Hwang, D. (2010). A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and Oceanography, 55(1), 1–10.

    Article  CAS  Google Scholar 

  • Lenntech. http://www.lenntech.com/periodic/elements/sc.htm. Accessed June, 2013.

  • Leybournea, M. I., Goodfellow, W. D., Boyleb, D. R., & Gwendy, M. (2000). Hall rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Applied Geochem, 15, 695–723.

    Article  Google Scholar 

  • Li, J., Hong, M., Yin, X., & Liu, J. (2010). Effects of the accumulation of the rare earth elements on soil macrofauna community. Journal of Rare Earths, 28, 957–964.

    Article  CAS  Google Scholar 

  • Maas, J. L., & Botterweg, J. (1993). RWS/RIZA Report No. 93, RIZA Lelystad, The Netherlands.

  • MeÂnard, O., Advocat, T., Ambrosi, J. P., & Michard, A. (1998). Behaviour of the actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Applied Geochemistry, 13, 105–126.

    Article  Google Scholar 

  • Merschel, G., & Bau, M. (2015). Rare earth elements in the aragonitic shell of freshwater mussel Corbcula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Science of the Total Environment, 533, 91–101.

    Article  CAS  Google Scholar 

  • Moller, P., Paces, T., Dulski, P., & Morteani, G. (2002). Anthropogenic Gd in surface water drainage system and the water supply of the city of Prague, Czech Republic. Environmental Science and Technology, 36, 2387–2394.

    Article  CAS  Google Scholar 

  • Nyakairu, G. W. A., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 13–28.

    Article  CAS  Google Scholar 

  • Otsuka, N., & Terakado, Y. (2003). Rare earth elements abundances in high phosphorus and low iron groundwater from the Nishinomiya district Japan: Variation in Ce anomaly, redox state and heavy rare earth enrichment. Geochemical Journal, 37, 1–9.

    Article  CAS  Google Scholar 

  • Palasz, A., & Czekaj, P. (2000). Toxicological and cytophysiological aspects of lanthanides action. Acta Biochimica Polonica, 47(4), 1107–1114.

    CAS  Google Scholar 

  • Pourjabbar, A., Grawunder, A., Lonschinski, M., Merten, D., Einax, J. W., & Georg Büchel, G. (2010). Statistical evidence of REE distribution and effective factors in groundwater of former uranium mining site, eastern Thuringia, Germany. In The 1st international applied geological congress. Department of Geology, Islamic Azad University—Mashad Branch, Iran, 26–28 April 1797–1802.

  • Reimann, C., Bjorvatn, K., Frengstad, B., Melaku, Z., Tekle-Haimanot, R., & Siewers, U. (2003). Drinking water quality in the Ethiopian section of the East African Rift Valley I—Data and health aspects. The Science of the Total Environment, 311(1–3), 65–80.

    Article  CAS  Google Scholar 

  • Ronnback, P., Astrom, M., & Gustafsson, J. P. (2008). Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden. Applied Geochemistry, 23, 1862–1880.

    Article  Google Scholar 

  • Smedley, P. (1991). The geochemistry of rare earth elements in groundwater from the Carnmeneslis area, south west England. Geochimica et Cosmochimica Acta, 70, 1495–1506.

    Google Scholar 

  • Stuyfzand, P. J., & Stuurman, R. J. (1994). Recognition and genesis of various brackish to hypersaline groundwaters in The Netherlands. In: G. Barrocu (Ed.), Proceedings of 13th salt water intrusion meeting (pp. 125–136). University of Cagliari, Sardinia.

  • Sumikawa, K. (1990). On the groundwater of Nishinomiya district, Kinki, Japan with special reference to the characteristics of permeability of the aquifer and chemical composition of the Miyamizu. Journal of Science Hiroshima University Series C, 9, 361–376.

    Google Scholar 

  • Sun, L., Gui, H., & Chen, S. (2011). Rare earth element geochemistry of groundwaters from coal bearing aquifer in Renlou coal mine, northern Anhui Province, China. Journal of Rare Earths, 29(2), 185–192.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Shimizu, H., Usui, A., Kagi, H., & Nomura, M. (2000). Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray absorption near-edge structure (XANES). Geochimica et Cosmochimica Acta, 64, 2929–2935.

    Article  CAS  Google Scholar 

  • Tang, J. W., & Johannesson, K. J. (2006). Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo sand aquifer, Texas, USA. Chemical Geology, 225, 156–171.

    Article  CAS  Google Scholar 

  • Telgmann, L., Wehe, C. A., Birka, M., Künnemeyer, J., Nowak, S., Sperling, M., & Karst, U. (2012). Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environmental Science and Technology, 46(21), 11929–11936.

    Article  CAS  Google Scholar 

  • Tweed, S. O., Weaver, T. R., Cartwright, I., & Schaefer, B. (2006). Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: An example from the Dandenong Ranges, southeast Australia. Chemical Geology, 234, 291–307.

    Article  CAS  Google Scholar 

  • Volokh, A. A., Gorbunov, A. V., Gundorina, S. F., Revich, B. A., Frontasyeva, M. V., & Sen Pal, C. (1990). Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Science of the Total Environment, 95, 141–148.

    Article  CAS  Google Scholar 

  • Waska, H., & Kim, G. (2010). Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone. Marine Ecology Progress Series, 407, 159–172.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1991). The composition of the upper earth’s crust and the natural cycles of selected metals: Metals in natural raw materials, natural resources. In E. Merien (Ed.), Metals and their compounds in the environment: Occurrence, analysis and biological relevance (pp. 3–17). Weinheim: VCH.

    Google Scholar 

  • Zhu, W., Xu, S., Shao, P., Zhang, H., Wu, D., Yang, W., et al. (2005). Investigation on liver function among population in high background of rare earth area in south China. Biological Trace Element Research, 104(1), 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance rendered by Activation Laboratories, located at 1336, Sandhill Drive, Ancaster, Ontario, L9G4V5, Canada, where the inductively coupled plasma-mass spectrometric analysis was carried out. This research is part of a Ph.D. dissertation of Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. The authors also acknowledge the Department of Environmental Management and Toxicology as well as the Department of Chemistry for allowing us to use their laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Arowolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayedun, H., Arowolo, T.A., Gbadebo, A.M. et al. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria. Environ Geochem Health 39, 649–664 (2017). https://doi.org/10.1007/s10653-016-9839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9839-8

Keywords

Navigation