Skip to main content

Advertisement

Log in

The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The contamination of soils by heavy metals from the mining industry nowadays is one of the greatest threats to environment and human health. The cleaning of polluted soils using cost-effective and eco-friendly methods such as phytoextraction has wide public recognition. Considering the above-mentioned ones, the objectives of the present study were the identification of Cu and Mo accumulation capability and the phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus as well as the determination of the influence of ammonium nitrate and EDTA on phytoextraction effectiveness. The contaminated soil samples for phytoremediation experiments under ex situ conditions were collected from the surroundings of the Zangezur Copper and Molybdenum Combine, Armenia. During the studies, it was found out that M. officinalis and A. retroflexus are capable of growing in polluted soils. M. officinalis grown in polluted soil had greater ability to accumulate heavy metals in roots, while the ability to transport the copper to aboveground parts was more pronounced in A. retroflexus. During the growing of these plant species for phytoextraction of soils contaminated by copper, it is necessary to use chelates, in particular the EDTA, for the enhancement of the effectiveness of phytoextraction process. EDTA due to chelating influence increased the availability of copper for plants and its mobility in them that lead to greater accumulation of this metal in shoots. The application of chelates did not have a significant impact on molybdenum accumulation intensity in plants; therefore, in case of this metal, it is unreasonable to use additional chelating compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu, M. M., Tavares, M. T., & Batista, M. J. (2008). Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. Journal of Geochemical Exploration, 96, 210–222.

    Article  CAS  Google Scholar 

  • Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., Onaindia, M., et al. (2004). Chelate-enhanced phytoremediation of soils polluted with heavy metals. Reviews in Environmental Science and Biotechnology, 3, 55–70.

    Article  CAS  Google Scholar 

  • Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909–954. https://doi.org/10.1093/jxb/erx465.

    Article  CAS  Google Scholar 

  • Baker, D. E., & Amacher, M. C. (1982). Nickel, copper, zinc, and cadmium. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties, agronomy monograph 9 (pp. 323–336). Madison: Agronomy Society of America and Soil Science Society of America.

    Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, Ch., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  • Brooks, R. R. (1998). Phytochemistry of hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining (pp. 15–54). New York: CAB International.

    Google Scholar 

  • Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C., & Chen, K. L. (2015). Phytoremediation of lead using corn in contaminated agricultural land-An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77.

    Article  CAS  Google Scholar 

  • Cuypers, A., Remans, T., Weyens, N., Colpaert, J., Vassilev, A., & Vangronsveld, J. (2013). Soil-plant relationships of heavy metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22, pp. 161–193). Amsterdam: Springer. https://doi.org/10.1007/978-94-007-4470-7.

    Chapter  Google Scholar 

  • Deram, A., Petit, D., Robinson, B., Brooks, R., Gregg, P., & van Halluwyn, C. (2000). Natural and induced heavy-metal accumulation by Arrhenatherum elatius: Implications for phytoremediation. Communications in Soil Science and Plant Analysis, 31, 413–421.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 63, 996–1004.

    Article  CAS  Google Scholar 

  • Farmaki, E. G., & Thomaidis, N. S. (2008). Current status of the metal pollution of the environment of Greece—a review. Global NEST Journal, 10(3), 366–375.

    Google Scholar 

  • Fernández-Caliani, J. C., & Barba-Brioso, C. (2010). Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain). Journal of Hazardous Materials, 181, 817–826.

    Article  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Ghazaryan, K., Movsesyan, H., Khachatryan, H., & Ghazaryan, N. (2018a). Geochemistry of potentially toxic trace elements in soils of mining area: a case study from Zangezur Copper and Molybdenum Combine, Armenia. Bulletin of Environmental Contamination and Toxicology, 101(6), 732–737. https://doi.org/10.1007/s00128-018-2443-0.

    Article  CAS  Google Scholar 

  • Ghazaryan, K., Movsesyan, H., Khachatryan, H., Ghazaryan, N., Minkina, T., Sushkova, S., et al. (2018b). Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochemistry: Exploration Environment, Analysis. https://doi.org/10.1144/geochem2018-035.

    Article  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Asian Journal on Energy and Environment, 6, 214–231.

    Google Scholar 

  • Guidotti, T. L. (2005). Toxicology. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkleman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 597–609). Burlington: Elsevier Academic Press.

    Google Scholar 

  • He, Q., Ren, Y., Mohamed, I., Ali, M., Hassan, W., & Zeng, F. (2013). Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil. Soil and Water Research, 8(2), 71–76.

    Article  CAS  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31, 800–805.

    Article  CAS  Google Scholar 

  • Jordan, F. L., Robin-Abbott, M., Maier, R. M., & Glenn, E. P. (2002). A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 21, 2698–2704.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  • Maite, R. K., Pinero, J. L. H., Oreja, J. A. G., & Santiago, D. L. (2004). Plant based bioremediation and mechanism of heavy metal tolerance of plants. A review. Proceedings of the Indian National Science Academy, 70, 1–12.

    Google Scholar 

  • Oorts, K. (2013). Copper. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22, pp. 367–394). Amsterdam: Springer. https://doi.org/10.1007/978-94-007-4470-7.

    Chapter  Google Scholar 

  • Pahlsson, A. M. B. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: A literature review. Water Air and Soil Pollution, 47, 287–319.

    Article  Google Scholar 

  • Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., & Qiu, G. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Pinto, A. P., de Varennes, A., Lopes, M. E., & Martins Teixeira, D. (2016). Biological approaches for remediation of metal-contaminated sites. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants (Vol. 3, pp. 65–112). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Qu, J., Yuan, X., Cong, Q., & Wang, S. (2008). Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES. Spectroscopy and Spectral Analysis, 28, 2674–2678.

    CAS  Google Scholar 

  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., et al. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology Monitoring and Management, 9, 76–84. https://doi.org/10.1016/j.enmm.2017.12.006.

    Article  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sanità di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.

    Article  Google Scholar 

  • Scullion, J. (2006). Remediating polluted soils. Naturwissenschaften, 93, 51–65.

    Article  CAS  Google Scholar 

  • Sharma, S. S., Kaul, S., Metwally, A., Goyal, K. C., Finkemeier, I., & Dietz, K. J. (2004). Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166, 1287–1295.

    Article  CAS  Google Scholar 

  • Sinegani, A. A. S., & Khalilikhah, F. (2010). Effect of EDTA, sheep manure extract, and their application time on Cd uptake by Helianthus annuus from a calcareous mine soil. Soil and Sediment Contamination, 19, 378–390.

    Article  CAS  Google Scholar 

  • Sing, D., & Sing, C. F. (2010). Impact of direct soil exposures from airborne dust and geophagy on human health. International Journal of Environmental Research and Public Health, 7, 1205–1223.

    Article  CAS  Google Scholar 

  • Singer, A. C., Bell, T., Heywood, C. A., Smith, J. A., & Thompson, I. P. (2007). Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environmental Pollution, 147, 74–82.

    Article  CAS  Google Scholar 

  • Vaxevanidou, K., Papassiopi, N., & Paspaliaris, I. (2008). Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere, 70, 1329–1337.

    Article  CAS  Google Scholar 

  • Wang, H. Q., Lu, S. J., Li, H., & Yao, Z. H. (2007). EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Journal of Environmental Science, 19, 1496–1499.

    Article  CAS  Google Scholar 

  • Young, S. D. (2013). Chemistry of heavy metals and metalloids in soils. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22, pp. 51–95). Amsterdam: Springer. https://doi.org/10.1007/978-94-007-4470-7.

    Chapter  Google Scholar 

  • Zemberyová, M., Barteková, J., & Hagarová, I. (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70, 973–978.

    Article  Google Scholar 

  • Zhi-xin, N., Sun, L. N., Sun, T. H., Li, Y. S., & Wang, H. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Science, 19, 961–967.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the RA MES State Committee of Science and Russian Foundation for Basic Research (RF) in the frames of the joint research project SCS № 18RF-077 and RFBR № 18-55-05023 accordingly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Ghazaryan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, K.A., Movsesyan, H.S., Minkina, T.M. et al. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environ Geochem Health 43, 1327–1335 (2021). https://doi.org/10.1007/s10653-019-00338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00338-y

Keywords

Navigation