Skip to main content

Advertisement

Log in

Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: implication on human health

  • Original Research
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In order to assess the geochemical mechanism liable for fluoride contamination in groundwater and its health effects on the people of the Shanmuganadhi River basin, Tamil Nadu, India, 61 groundwater samples were collected during post- and pre-monsoon seasons from the wells used for drinking purposes. Collected samples were analysed for various physico-chemical parameters. The parameters estimated in the present study are hydrogen ion concentration (pH), total dissolved solids, electrical conductivity, calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3), chloride (Cl), sulphate (SO42−), nitrate (NO3), phosphate (PO43−) and fluoride (F). The fluoride ion concentration in the groundwater samples of this region varied from 0.01 to 2.50 mg/l and 0.01 to 3.30 mg/l during post- and pre-monsoon seasons, respectively. Out of 61 groundwater samples, 14 samples of post-monsoon season and 16 samples of pre-monsoon season represented high, very high and extremely high classes of fluoride, which cause dental fluorosis in this region. The fluoride-bearing minerals in the granitic and gneissic rocks such as apatite, hornblende, muscovite, biotite and amphiboles are the major sources for fluoride contamination in this area. In addition to the geogenic sources, applications of synthetic fertilizers in the agricultural fields also contribute significant amount of fluoride ions to groundwater. The spatial distribution of fluoride in different geological formations clearly indicate that the wells located in charnockite terrain were possessing very low fluoride concentration when compare with the wells located in the hornblende–biotite gneiss formation. Therefore, dental fluorosis risks are mostly associated with rock types in this region. People living over the basement rock comprising of hornblende–biotite gneiss are prone for fluorosis. Fluoride exhibited good positive correlation with bicarbonate in groundwater. As fluoridated endemic regions normally acquire lot of bicarbonate in groundwater samples, Shanmuganadhi basin falls under fluoride endemic category. The present study identified 26 villages in Shanmuganadhi basin as probable fluorosis risk areas where attention should be given to treat the fluoride-rich groundwater before drinking water supply. The groundwater level fluctuation study also designates that rise in water level reduces the concentration of fluoride due to dilution mechanism. Therefore, recharge of groundwater by artificial methods will definitely improve the present scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology,241, 91–103. https://doi.org/10.1016/S0022-1694(00)00370-X.

    Article  CAS  Google Scholar 

  • Adimalla, N., Vasa, S. K., & Li, P. (2018). Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: An insight of controlling factors of fluoride enrichment model. Modeling Earth System and Environment.. https://doi.org/10.1007/s40808-018-0443-z.

    Article  Google Scholar 

  • Adimalla, N., & Venkatayogi, S. (2017). Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environmental Earth Sciences,76, 45. https://doi.org/10.1007/s12665-016-6362-2.

    Article  CAS  Google Scholar 

  • Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science. https://doi.org/10.1007/s13201-018-0682-1.

    Article  Google Scholar 

  • Aghapour, S., Bina, B., Tarrahi, M. J., Amiri, F., & Ebrahimi, A. (2018). Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-6467-z.

    Article  Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2017). Assessment of human health risk associated with high groundwater fluoride intake in Southern Districts of Punjab, India. Exposure and Health. https://doi.org/10.1007/s12403-017-0268-4.

    Article  Google Scholar 

  • Ali, S. A., & Ali, U. (2018). Hydrochemical characteristics and spatial analysis of groundwater quality in parts of Bundelkhand Massif, India. Applied Water Science. https://doi.org/10.1007/s13201-018-0678-x.

    Article  Google Scholar 

  • Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2016). Worldwide contamination of water by fluoride. Environmental Chemistry Letters,14, 291–315. https://doi.org/10.1007/s10311-016-0563-5.

    Article  CAS  Google Scholar 

  • Anandakumar, S., Subramani, T., & Elango, L. (2009). Major ion groundwater chemistry of Lower Bhavani River basin, Tamil Nadu, India. Journal of Applied Geochemistry,11(1), 92–101.

    CAS  Google Scholar 

  • Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology,33, 13–24. https://doi.org/10.1007/s002540050221.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Aqeel, A., Al-Amry, A., & Alharbi, O. (2017). Assessment and geospatial distribution mapping of fluoride concentrations in the groundwater of Al-Howban basin, Taiz-Yemen. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3069-y.

    Article  Google Scholar 

  • Aref, F., & Roosta, R. (2016). Assessment of groundwater quality and hydrochemical characteristics in Farashband plain, Iran. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-016-2781-3.

    Article  Google Scholar 

  • Batabyal, A. K. (2014). Correlation and multiple linear regression analysis of groundwater quality data of Bardhaman District, West Bengal, India. International Journal of Research in Chemistry Environment,4(4), 42–51.

    CAS  Google Scholar 

  • Batabyal, A. K. (2018). Hydrogeochemistry and quality of groundwater in a part of Damodar Valley, Eastern India: An integrated geochemical and statistical approach. Stochastic Environmental Research and Risk Assessment,32(8), 2351–2368. https://doi.org/10.1007/s00477-018-1552-y.

    Article  Google Scholar 

  • Bhargava, D. S., & Killender, D. J. (1988). The technology of water resources in industries: A rational approach. Journal of Indian Water Works Association,20, 107–112.

    Google Scholar 

  • Bhattacharya, P., Lesafi, F., Filemon, R., Ligate, F., Ijumulana, J., & Mtalo, F. (2016). Geogenic fluoride and arsenic contamination in the groundwater environments in Tanzania. EGU General Assembly Conference Abstracts,18, 16677.

    Google Scholar 

  • Camargo, J. A. (2003). Fluoride toxicity to aquatic organisms: A review. Chemosphere,50, 251–264. https://doi.org/10.1016/S0045-6535(02)00498-8.

    Article  Google Scholar 

  • Chidambaram, S., Bala Krishna Prasad, M., Manivannan, R., Karmegam, U., Singaraja, C., Anandhan, P., et al. (2013). Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). Environmental Earth Sciences,68, 333–342. https://doi.org/10.1007/s12665-012-1741-9.

    Article  CAS  Google Scholar 

  • Choi, A. L., Sun, G., Zhang, Y., & Grandjean, P. (2012). Developmental fluoride neurotoxicity: A systematic review and meta-analysis. Environmental Health Perspect,120(10), 1362–1368.

    CAS  Google Scholar 

  • Chuah, C. J., Lye, H. R., Ziegler, A. D., Wood, S. H., Kongpun, C., & Rajchagool, S. (2016). Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand. The Science of the Total Environment,545, 266–279.

    Google Scholar 

  • Dar, M. A., Sankar, K., & Dar, I. A. (2011). Fluorine contamination in groundwater: A major challenge. Environmental Monitoring and Assessment,173, 955–968. https://doi.org/10.1007/s10661-010-1437-0.

    Article  CAS  Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology,24(1), 85–96. https://doi.org/10.1016/0169-7722(96)00004-6.

    Article  CAS  Google Scholar 

  • Dean, H. T., & Elvove, E. (1937). Further studies on the minimal threshold of chronic endemic dental fluorosis. Public Health Reports (1896-1970), 52(37), 1249.

    CAS  Google Scholar 

  • Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., Singh, V. K., et al. (2012). Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment,184, 3279–3291. https://doi.org/10.1007/s10661-011-2188-2.

    Article  CAS  Google Scholar 

  • Dissanayake, C. B. (1991). The fluoride problem in the ground water of Sri Lanka - environmental management and health. International Journal of Environmental Studies, 38(2–3), 137–155.

    CAS  Google Scholar 

  • Dişli, E. (2017). Hydrochemical characteristics of surface and groundwater and suitability for drinking and agricultural use in the upper Tigris River basin, Diyarbakır–batman, Turkey. Environmental Earth Sciences,76, 500. https://doi.org/10.1007/s12665-017-6820-5.

    Article  CAS  Google Scholar 

  • Duraisamy, S., Govindhaswamy, V., Duraisamy, K., Krishinaraj, S., Balasubramanian, A., & Thirumalaisamy, S. (2018). Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0183-z.

    Article  Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (2001). Fluoride in natural waters. In O. Selinus (Ed.), Essentials of medical geology (pp. 311–336). Dordrecht: Springer.

    Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (2005). Fluoride in natural waters. In O. Selinus (Ed.), Essentials of medical geology (pp. 311–336). Dordrecht: Springer.

    Google Scholar 

  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006). Fluoride in drinking-water. London: IWA Publishing.

    Google Scholar 

  • Francisca, M. M., Patrick, C. K., & Peter, G. N. (2017). Assessment of the impact of groundwater fluoride on human health: A case study of Makindu District in Kenya. Journal of Earth Science and Climate Change,2017(8), 4. https://doi.org/10.4172/2157-7617.1000396.

    Article  CAS  Google Scholar 

  • Gao, H., Jin, Y., & Wei, J. (2012). Health risk assessment of fluoride in drinking water from Anhui Province in China. Environmental Monitoring and Assessment, 185(5), 3687–3695. https://doi.org/10.1007/s10661-012-2820-9.

    Article  CAS  Google Scholar 

  • Gao, H. J., Jin, Y. Q., & Wei, J. L. (2013). Health risk assessment of fluoride in drinking water from Anhui Province in China. Environmental Monitoring and Assessment,185(5), 3687–3695. https://doi.org/10.1007/s10661-012-2820-9.

    Article  CAS  Google Scholar 

  • Garg, V. K., Suthar, S., Singh, S., Sheoran, A., Garima, M., & Jai, S. (2009). Drinking water quality in villages of southwestern Haryana, India: Assessing human health risks associated with hydrochemistry. Environmental Geology,58, 1329–1340.

    CAS  Google Scholar 

  • Ghosh, A., Mukherjee, K., Ghosh, S. K., & Saha, B. (2013). Sources and toxicity of fluoride in the environment. Research on Chemical Intermediates,39, 2881–2915. https://doi.org/10.1007/s11164-012-0841-1.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science,17, 1088–1090.

    Google Scholar 

  • Giridharan, L., Venugopal, T., & Jayaprakash, M. (2008). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of river Cooum, Chennai, India. Environmental Monitoring and Assessment,143, 161–178. https://doi.org/10.1007/s10661-007-9965-y.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, S. B., Viswanathan, G., & Ilango, S. S. (2012). Prevalence of fluorosis and identification of fluoride endemic areas in Manur block of Tirunelveli district, Tamil Nadu, South India. Applied Water Science,2, 235–243. https://doi.org/10.1007/s13201-012-0043-4.

    Article  CAS  Google Scholar 

  • Gowrisankar, G., Jagadeshan, G., & Elango, L. (2017). Managed aquifer recharge by a check dam to improve the quality of fluoride-rich groundwater: A case study from southern India. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-5910-x.

    Article  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93(1), 1–12. https://doi.org/10.1016/j.gexplo.2006.07.001.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and Genesis of Fluoride-Containing Ground Waters in India. Ground Water, 13(3), 275–281.

    CAS  Google Scholar 

  • Hanipha, M. M., & Hussain, Z. A. (2013). Study of groundwater quality at Dindigul town, Tamil Nadu, India. International Research Journal of Environment Sciences,2, 68–73.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Reston: Department of the Interior, US Geological Survey.

    Google Scholar 

  • Hema, S., Subramani, T., & Elango, L. (2010). GIS Study on vulnerability assessment of water quality in a part of Cauvery River. International Journal of Environmental Sciences,1(1), 1–17.

    CAS  Google Scholar 

  • Irigoyen-Camacho, M., Pérez, A. G., González, A. M., & Alvarez, R. H. (2016). Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. The Science of the Total Environment,541, 512–519. https://doi.org/10.1016/j.scitotenv.2015.09.085.

    Article  CAS  Google Scholar 

  • Jacks, G., Rajagopalan, K., Alveteg, T., & Jönsson, M. (1993). Genesis of high-F groundwaters, southern India. Applied Geochemistry, 8, 241–244.

    Google Scholar 

  • Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management,162, 306–325. https://doi.org/10.1016/j.jenvman.2015.07.020.

    Article  CAS  Google Scholar 

  • Jain, P. K. (1998). Hydrology and quality of groundwater Hirapur district, Sagar (M.P), India. Pollution Research,17(1), 91–94.

    CAS  Google Scholar 

  • Jayaprakash, M., Giridharan, L., Venugopal, T., Krishna Kumar, S. P., & Periakali, P. (2008). Characterization and evaluation of the factors affecting the geochemistry of groundwater in Neyveli, Tamil Nadu, India. Environmental Geology,54, 855–867. https://doi.org/10.1007/s00254-007-0868-6.

    Article  CAS  Google Scholar 

  • Kalisinska, E., & Palczewska-Komsa, M. (2011). Teeth of the red fox Vulpes vulpes (L., 1758) as a bioindicator in studies on fluoride pollution. Acta Theriologica (Warsz),56, 343–351. https://doi.org/10.1007/s13364-011-0039-8.

    Article  Google Scholar 

  • Karthikeyan, G., Pius, A., & Apparao, B. V. (1996). Contribution of fluoride in water and food to the prevalence of fluorosis in areas of Tamil Nadu in south India. Fluoride,29, 151–155.

    CAS  Google Scholar 

  • Karthikeyan, G., & Shanmugasundarraj, A. (2000). Isopleth mapping and in insitu Fluoride dependence on water quality in the Krishnagiri block of Tamil Nadu in South India. Fluoride,33, 121–127.

    CAS  Google Scholar 

  • Karthikeyan, K., Nanthakumar, K., Velmurugan, P., Tamilarasi, S., & Lakshmanaperumalsamy, P. (2010). Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environmental Monitoring and Assessment,160, 141–155. https://doi.org/10.1007/s10661-008-0664-0.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., Wu, J., & Srinivasamoorthy, K. (2019). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Human and Ecological Risk Assessment: An International Journal,4, 5. https://doi.org/10.1080/10807039.2019.1568859.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Vennila, G., Suresh, M., & Subramanian, S. K. (2013). Evaluation of the groundwater quality feasibility zones for irrigational purposes through GIS in Omalur Taluk, Salem District, South India. Environmental Science and Pollution Research,20(10), 7320–7333. https://doi.org/10.1007/s11356-013-1746-2.

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Moore, F., Esmaeili, A., & Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environmental Earth Sciences,61(4), 777–786. https://doi.org/10.1007/s12665-009-0390-0.

    Article  CAS  Google Scholar 

  • KheradPisheh, Z., Ehrampoush, M., Montazeri, A., Mirzaei, M., Mokhtari, M., & Mahvi, A. (2016). Fluoride in drinking water in 31 provinces of Iran. Exposure and Health,8(4), 465–474. https://doi.org/10.1007/s12403-016-0204-z.

    Article  CAS  Google Scholar 

  • Kim, K., & Jeong, G. Y. (2005). Factors influencing natural occurrence of fluoride-rich groundwaters: A case study in the southeastern part of the Korean Peninsula. Chemosphere,58(10), 1399–1408. https://doi.org/10.1016/j.chemosphere.2004.10.002.

    Article  CAS  Google Scholar 

  • Kouakou, V. K., Obuobie, E., Banning, A., & Wohnlich, S. (2017). Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment, northern Ghana. Environmental Earth Sciences,76, 185. https://doi.org/10.1007/s12665-017-6490-3.

    Article  CAS  Google Scholar 

  • Kowalski, F. (1999). Fluoridation. Journal American Water Works Association,91, 4.

    CAS  Google Scholar 

  • Kumar, M. G., Agarwal, A. K., & Rameshwar, B. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing,36(4), 323–334. https://doi.org/10.1007/s12524-008-0033-z.

    Article  Google Scholar 

  • Kut, K. M. K., Sarswat, A., Srivastava, A., Pittman, C. U., & Mohan, D. (2016). A review of fluoride in African groundwater and local remediation methods. Groundwater for Sustainable Development,2, 190–212.

    Google Scholar 

  • Li, P., He, X., Li, Y., & Xiang, G. (2018). Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese loess plateau: A case study of Tongchuan, Northwest China. Exposure and Health. https://doi.org/10.1007/s12403-018-0278-x.

    Article  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2016). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences,9, 15. https://doi.org/10.1007/s12517-015-2059-1.

    Article  CAS  Google Scholar 

  • Li, X., Hou, X., Zhou, Z., & Liu, L. (2009). Distribution and 428 geochemical evolution of fluoride in groundwater of Taiyuan basin, China. In ICEET ‘09 proceedings of the 2009 international conference on energy and environment technology (Vol. 2, pp. 507–510).

  • Manikandan, S., Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Singaraja, C., et al. (2012). A study on the high fluoride concentration in the magnesiumrich waters of hard rock aquifer in Krishnagiri district, Tamilnadu, India. Arabian Journal of Geosciences,7, 273–285. https://doi.org/10.1007/s12517-012-0752-x.

    Article  CAS  Google Scholar 

  • Marghade, D., Malpe, D. B., & Zade, A. B. (2011). Geochemical characterization of groundwater from the northeastern part of Nagpur urban, Central India. Environmental Earth Sciences,62, 1419–1430.

    CAS  Google Scholar 

  • Mondal, D., Dutta, G., & Gupta, S. (2016). Inferring the fluoride hydrogeochemistry and effect of consuming fluoridecontaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal. Environmental Geochemistry and Health,38, 557–576. https://doi.org/10.1007/s10653-015-9743-7.

    Article  CAS  Google Scholar 

  • Moore, R. B. (2004). Quality of water in the fractured-bedrock aquifer of New Hampshire, U.S. Geological Survey Scientific Investigations Report. 2004–5093, 30.

  • Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0096-x.

    Article  Google Scholar 

  • Nag, S. K., & Suchetana, B. (2016). Groundwater quality and its suitability for irrigation and domestic purposes: A study in Rajnagar Block, Birbhum District, West Bengal, India. Journal of Earth Science and Climate Change.,7, 337. https://doi.org/10.4172/2157-7617.1000337.

    Article  Google Scholar 

  • Narsimha, A., & Rajitha, S. (2018). Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1438176.

    Article  Google Scholar 

  • Narsimha, A., & Sudarshan, V. (2016). Contamination of fluoride in groundwater and its effect on human health: A case study in hard rock aquifers of Siddipet, Telangana State, India. Applied Water Science,2017(7), 2501–2512. https://doi.org/10.1007/s13201-016-0441-0.

    Article  CAS  Google Scholar 

  • Narsimha, A., & Sudarshan, V. (2017). Assessment of fluoride contamination in groundwater from Basara, Adilabad District, Telangana state, India. Applied Water Science,7, 2717–2725. https://doi.org/10.1007/s13201-016-0489-x.

    Article  CAS  Google Scholar 

  • Oruc, N. (2008). Occurrence and problems of high fluoride waters in Turkey: An overview. Environmental Geochemistry and Health,30(4), 315–323. https://doi.org/10.1007/s10653-008-9160-2.

    Article  CAS  Google Scholar 

  • Panneer, M., Sivakumar, R., & Senthilkumar, M. (2017). Fluoride hydrogeochemistry and its occurrence in drinking water in Morappur region of Dharmapuri District, South India. International Journal of Environmental Science and Technology,14(9), 1931–1944. https://doi.org/10.1007/s13762-017-1277-3.

    Article  CAS  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh, India. Environmental Earth Sciences,75, 611. https://doi.org/10.1007/s12665-015-5108-x.

    Article  CAS  Google Scholar 

  • Patolia, P., & Sinha, A. (2017). Fluoride contamination in Gharbar Village of Dhanbad District, Jharkhand, India: Source identification and management. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3164-0.

    Article  Google Scholar 

  • Pearson, K. (1896). Mathematical contributions to the theory of evolution, III. Regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London,187, 253–318.

    Google Scholar 

  • Periakali, P., Subramanian, S., Eswaramoorthi, S., Arul, B., Rao, N. R., & Sridhar, S. G. D. (2001). Distribution of fluoride in the ground water of Salem and Namakkal districts, Tamil Nadu. Journal of Applied Geochemistry,3, 120–132.

    Google Scholar 

  • Prajapati, M., Jariwala, N., & Agnihotri, P. (2017). Spatial distribution of groundwater quality with special emphasis on fluoride of Mandvi Taluka, Surat, Gujarat, India. Applied Water Science,7(8), 4735–4742. https://doi.org/10.1007/s13201-017-0636-z.

    Article  CAS  Google Scholar 

  • Prasad, N. B. N. (1984). Hydrogeological studies in the Bhadra River basin. Ph.D. thesis, University of Mysore, Karnataka, India, p. 323.

  • Raj, D., & Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, southern India. Geoscience Frontiers,8(1), 117–124. https://doi.org/10.1016/j.gsf.2016.01.002.

    Article  CAS  Google Scholar 

  • Raju, N. J. (2012). Evaluation of hydrogeochemical processes in the Pleistocene aquifers of Middle Ganga Plain, Uttar Pradesh, India. Environmental Earth Sciences,65(4), 1291–1308.

    Google Scholar 

  • Raju, N. J. (2016). Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: Geochemistry and health implications. Quaternary International. https://doi.org/10.1016/j.quaint.2016.05.028.

    Article  Google Scholar 

  • Rao, N. C. R. (2003). Fluoride and environment—A review. In M. J. V. Bunch, M. Suresh, & T. V. Kumaran (Eds.), Proceedings of third international conference on environment and health. Chennai: York University.

    Google Scholar 

  • Rao, N. S. (1997). The occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrological Sciences Journal,42(6), 877–892. https://doi.org/10.1080/02626669709492085.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2006). Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India. Environmental Geology,51(4), 631–645. https://doi.org/10.1007/s00254-006-0358-2.

    Article  CAS  Google Scholar 

  • Rasool, A., Xiao, T., Baig, Z. T., Masood, S., Mostafa, K. M., & Iqbal, M. (2015). Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: Source discrimination and health risk assessment. Environmental Science and Pollution Research,22(24), 19729–19746. https://doi.org/10.1007/s11356-015-5159-2.

    Article  CAS  Google Scholar 

  • Robinson, G. R., & Kapo, K. E. (2003). Generalized lithology and lithogeochemical character of nearsurface bedrock in the New England Region. Reston: U.S. Geological Survey.

    Google Scholar 

  • Sahu, P., Kisku, G. C., Singh, P. K., Kumar, V., Kumar, P., & Shukla, N. (2018). Multivariate statistical interpretation on seasonal variations of fluoride-contaminated groundwater quality of Lalganj Tehsil, Raebareli District (UP), India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7658-1.

    Article  Google Scholar 

  • Sajil Kumar, P. J. (2017). Grounding a natural background level for fluoride in a potentially contaminated crystalline aquifer in south India. Environmental Science and Pollution Research,24(34), 26623–26633. https://doi.org/10.1007/s11356-017-0239-0.

    Article  CAS  Google Scholar 

  • Sakram, G., Kuntamalla, S., Machender, G., Dhakate, R., & Narsimha, A. (2018). Multivariate statistical approach for the assessment of fluoride and nitrate concentration in groundwater from Zaheerabad area, Telangana State, India. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-018-0258-0.

    Article  Google Scholar 

  • Salve, P., Maurya, A., Kumbhare, P., Ramteke, D., & Wate, S. (2008). Assessment of groundwater quality with respect to fluoride. Bulletin of Environmental Contamination and Toxicology,81(3), 289–293. https://doi.org/10.1007/s00128-008-9466-x.

    Article  CAS  Google Scholar 

  • Saraf, A. K., & Choudhury, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing,19(10), 1825–1841. https://doi.org/10.1080/014311698215018.

    Article  Google Scholar 

  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Temporary fluoride concentration changes in groundwater in the context of impact assessment in the Vaniyar sub-basin, South India. Acta Geochimica,36(1), 112–123. https://doi.org/10.1007/s11631-016-0137-z.

    Article  CAS  Google Scholar 

  • Shaji, E., Viju, J., & Thambi, D. (2007). High fluoride in groundwater of Palghat District, Kerala. Current Science,92, 240–245.

    CAS  Google Scholar 

  • Singh, S., Raju, N. J., & Ramakrishna, Ch. (2015). Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. Journal of Water Resource and Protection,7, 482–497.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, S., Chidambaram, S., & Anandhan, P. (2012). Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamilnadu, India. Arabian Journal of Geosciences,5, 83–94. https://doi.org/10.1007/s12517-010-0162-x.

    Article  CAS  Google Scholar 

  • Stormer, J. C., & Carmichael, I. S. E. (1970). Villiaumite and the occurrence of fluoride minerals in igneous rocks. American Mineralogist,55, 126–134.

    CAS  Google Scholar 

  • Subba Rao, N. (2011). High-fluoride groundwater. Environmental Monitoring and Assessment,176, 637–645.

    CAS  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Environmental Geology,47, 1099–1110.

    CAS  Google Scholar 

  • Subramani, T., Elango, L., & Rajmohan, N. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment,162, 123–137.

    CAS  Google Scholar 

  • Sudhakar, A., & Narsimha, A. (2013). Suitability and assessment of groundwater for irrigation purpose: A case study of Kushaiguda area, Ranga Reddy district, Andhra Pradesh, India. Advances in Applied Science Research,4(6), 75–81.

    CAS  Google Scholar 

  • Susheela, A. K. (2003). Treatise on fluorosis (2nd ed.). Delhi: Fluorosis Res. Rural Dev. Found.

    Google Scholar 

  • Tavener, S. J., & Clark, J. H. (2006). Fluorine: Friend or foe? A green chemist’s perspective. In A. Tressaud (Ed.), Fluorine and the environment: Agrochemicals, archaeology, green chemistry and water (Chapter 5) (pp. 177–202). Amsterdam: Elsevier.

    Google Scholar 

  • Tejaswi, S. K., Shetty, S., Annapoorna, B., Pujari, S. C., Reddy, S., & Nandlal, B. (2013). A pioneering study of dental fluorosis in the libyan population. Journal of International Oral Health: JIOH,5, 67.

    Google Scholar 

  • Thivya, C., Chidambaram, S., Rao, M. S., Thilagavathi, R., Prasanna, M. V., & Manikandan, S. (2015). Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India). Applied Water Science,7, 1011–1023. https://doi.org/10.1007/s13201-015-0312-0.

    Article  CAS  Google Scholar 

  • Thomas, K. B., Opoku, F., Acquaah, S. O., & Akoto, O. (2016). Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environmental Earth Sciences,75, 489. https://doi.org/10.1007/s12665-015-5105-0.

    Article  CAS  Google Scholar 

  • Vennila, G., Subramani, T., & Elango, L. (2008). GIS based groundwater quality assessment of Vattamalaikarai basin, Tamil Nadu, India. Journal of Nature Environment and Pollution Technology,7(4), 585–592.

    CAS  Google Scholar 

  • Vikas, C., Kushwaha, R., Ahmad, W., Prasannakumar, V., & Reghunath, R. (2013). Genesis and geochemistry of high fluoride bearing groundwater from a semi-arid terrain of NW India. Environmental Earth Sciences,68, 289–305.

    CAS  Google Scholar 

  • Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Ilango, S. S., & Aditya, G. (2009). Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India. Science of the Total Environment,407, 5298–5307. https://doi.org/10.1016/j.scitotenv.2009.06.028.

    Article  CAS  Google Scholar 

  • Vithanage, M., & Bhattacharya, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemistry Letters,13, 131–147. https://doi.org/10.1007/s10311-015-0496-4.

    Article  CAS  Google Scholar 

  • Wasana, H. M., Perera, G. D., Gunawardena, P. D. S., Fernando, P. S., & Bandara, J. (2017). WHO water quality standards vs synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Scientific Reports,7, 42516. https://doi.org/10.1038/srep42516.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences,7(10), 3973–3982. https://doi.org/10.1007/s12517-013-1057-4.

    Article  CAS  Google Scholar 

  • Young, S. M., Pitawala, A., & Ishiga, H. (2011). Factors controlling fluoride contents of groundwater in north-central and north-western Sri Lanka. Environment and Earth Science,63, 1333–1342.

    CAS  Google Scholar 

  • Zabin, S. A., Foaad, M., & Al-Ghamdi, A. Y. (2008). Noncarcinogenic risk assessment of heavy metals and fluoride in some water wells in the Al-Baha Region, Saudi Arabia. Human and Ecological Risk Assessment,14(6), 1306–1317. https://doi.org/10.1080/10807030802494667.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (File No. ECR/2017/000132 dated 18.07.2017) for providing the grants and support to carry out this work effectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karunanidhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravinthasamy, P., Karunanidhi, D., Subramani, T. et al. Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: implication on human health. Environ Geochem Health 42, 1937–1963 (2020). https://doi.org/10.1007/s10653-019-00452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00452-x

Keywords

Navigation