Skip to main content
Log in

Joint PP and PS Pre-stack Seismic Inversion for Stratified Models Based on the Propagator Matrix Forward Engine

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Pre-stack seismic inversion of the P- and S-wave velocities and bulk density is important in seismic exploration for evaluating lithological units and fluid properties. Generally, this inversion is based on ray-tracing modeling, which introduces errors and requires substantial pre-processing for stratified models due to its oversimplified single-interface assumption. To overcome those problems, we propose a pre-stack inversion method, using wave-equation-based modeling as a forward engine. Most wave-equation-based pre-stack inversions are based on the reflectivity method and adopt nonlinear optimization algorithms, although accurate, but computationally expensive. Hence, we use a fast propagator matrix (PM) method valid for layered media. To improve the stability and accuracy, the PP data inversion is extended to joint PP and PS PM-based inversion (JPMI). A linear inversion scheme is adopted to reduce the computational cost, and the Fréchet derivatives are computed accordingly. Moreover, to obtain an optimal model solution, the L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) optimization algorithm and L-curve criterion, an adaptive regularization parameter acquisition method, are implemented. A posterior probability analysis shows that the method has a higher parameter sensitivity than the joint exact Zoeppritz-based inversion and gives better estimations than the single-data inversion. We discuss the effects of dataset weight, internal multi-reflections, time window setting, noise level and initial model by using model tests. Synthetic and real-data examples demonstrate that the algorithm is better than the single PP inversion in terms of stability and accuracy, especially for S-wave velocity and density estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Backus G (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67(11):4427–4440

    Google Scholar 

  • Booth D, Crampin S (1983) The anisotropic reflectivity technique: theory. Geophys J Int 72(3):755–766

    Google Scholar 

  • Carcione J (1988) Viscoacoustic wave propagation simulation in the earth. Geophysics 53(6):769–777

    Google Scholar 

  • Carcione J (1995) Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics 60(2):537–548

    Google Scholar 

  • Carcione J (1996) Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation. J Acoust Soc Am 99(5):2655–2666

    Google Scholar 

  • Carcione J (1997) Reflection and transmission of qP-qS plane waves at a plane boundary between viscoelastic transversely isotropic media. Geophys J Int 129(3):669–680

    Google Scholar 

  • Carcione J (2001) Amplitude variations with offset of pressure-seal reflections. Geophysics 66(1):283–293

    Google Scholar 

  • Carcione J (2014) Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media. Elsevier, Amsterdam

  • Cheng G, Yin X, Zong Z (2018) Third-order AVO inversion for lamé parameter based on inverse operator estimation algorithm. J Petrol Sci Eng 164:117–126

    Google Scholar 

  • Chopra S, Castagna J (2007) Introduction to this special section—AVO. Lead Edge 26(12):1506–1507

    Google Scholar 

  • Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31(4):377–403

    Google Scholar 

  • Debski W, Tarantola A (1995) Information on elastic parameters obtained from the amplitudes of reflected waves. Geophysics 60(5):1426–1436

    Google Scholar 

  • Fatti JL (1994) Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique. Geophysics 59(9):1362–1376

    Google Scholar 

  • Fryer G (1980) A slowness approach to the reflectivity method of seismogram synthesis. Geophys J Int 63(3):747–758

    Google Scholar 

  • Fryer G, Frazer L (1984) Seismic waves in stratified anisotropic media. Geophys J Roy Astron Soc 78(3):691–710

    Google Scholar 

  • Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Int 23(4):417–433

    Google Scholar 

  • Gisolf A, Haffinger P, Hanitzsch C, Doulgeris P, Veeken P (2014) Non-linear full wavefield inversion applied to carboniferous reservoirs in the Wingate gas field (SNS, Offshore UK). In: 76th EAGE conference and exhibition 2014

  • Golub GH, Von Matt U (1997) Generalized cross-validation for large-scale problems. J Comput Graph Stat 6(1):1–34

    Google Scholar 

  • Graebner M (1992) Plane-wave reflection and transmission coefficients for a transversely isotropic solid. Geophysics 57(11):1512–1519

    Google Scholar 

  • Guo Q, Zhang H, Han F et al (2018) Prestack seismic inversion based on anisotropic Markov random field. IEEE Trans Geosci Remote Sens 56(2):1069–1079

    Google Scholar 

  • Guo Q, Zhang H, Cao H et al (2020a) Hybrid seismic inversion based on multi-order anisotropic Markov random field. IEEE Trans Geosci Remote Sens 58(1):407–420

    Google Scholar 

  • Guo Q, Ba J, Luo C et al (2020b) Stability-enhanced prestack seismic inversion using hybrid orthogonal learning particle swarm optimization. J Petrol Sci Eng 192:107313

    Google Scholar 

  • Hale D (2009) A method for estimating apparent displacement vectors from time-lapse seismic images. Geophysics 74(5):V99–V107

    Google Scholar 

  • Hansen P (2000) The L-curve and its use in the numerical treatment of inverse problems. In: Johnston P (ed) Computational inverse problems in electrocardiology. WIT Press, Southampton, pp 119–142

    Google Scholar 

  • Hansen P, O’Leary D (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Google Scholar 

  • Haskell N (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43(1):17–34

    Google Scholar 

  • Huang G, Chen X, Li J et al (2017a) Application of an adaptive acquisition regularization parameter based on an improved GCV criterion in pre-stack AVO inversion. J Geophys Eng 14(1):100–112

    Google Scholar 

  • Huang G, Li J, Luo C et al (2017b) Regularisation parameter adaptive selection and its application in the prestack AVO inversion. Explor Geophys 49(3):323–335

    Google Scholar 

  • Huang G, Chen X, Luo C et al (2018) Application of optimal transport to exact Zoeppritz equation AVA inversion. IEEE Geosci Remote Sens Lett 15(9):1337–1341

    Google Scholar 

  • Kennett B (1983a) Seismic wave propagation in stratified media. Advances in applied mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Kennett BLN (1983b) Seismic wave propagation in stratified media. Cambridge University Press, Cambridge

    Google Scholar 

  • Kennett B, Kerry N (1979) Seismic waves in a stratified half space. Geophys J Int 57(3):557–583

    Google Scholar 

  • Li T, Mallick S (2013) Prestack waveform inversion of four-component, two-azimuth surface seismic data for orthorhombic elastic media parameters using a nondominated sorting genetic algorithm. Seg Technical Program Expanded Abstracts

  • Li T, Mallick S (2015) Multicomponent, multi-azimuth pre-stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm. Geophys J Int 200(2):1136–1154

    Google Scholar 

  • Li K, Yin X, Zong Z (2017) Pre-stack Bayesian cascade AVA inversion in complex-Laplace domain and its application to the broadband data acquired at East China. J Petrol Sci Eng 158:751–765

    Google Scholar 

  • Liu H, Li J, Chen X et al (2016) Amplitude variation with offset inversion using the reflectivity method. Geophysics 81(4):R185–R195

    Google Scholar 

  • Lu J, Yang Z, Wang Y et al (2015) Joint PP and PS AVA seismic inversion using exact Zoeppritz equations. Geophysics 80(5):R239–R250

    Google Scholar 

  • Lu J, Wang Y, Chen J et al (2018) Joint anisotropic amplitude variation with offset inversion of PP and PS seismic data. Geophysics 83(2):N31–N50

    Google Scholar 

  • Luo C, Li X, Huang G (2018a) Hydrocarbon identification by application of improved sparse constrained inverse spectral decomposition to frequency-dependent AVO inversion. J Geophys Eng 15(4):1446–1459

    Google Scholar 

  • Luo C, Li X, Huang G (2018b) Information on S-wave velocity and density obtained from multi-wave data. SEG Technical Program Expanded Abstracts

  • Mallick S (1999) Some practical aspects of prestack waveform inversion using a genetic algorithm: an example from the east Texas Woodbine gas sand. Geophysics 64(64):326–336

    Google Scholar 

  • Mallick S (2007) Amplitude-variation-with-offset, elastic-impedence, and wave-equation synthetics: a modeling study. Geophysics 72(1):C1–C7

    Google Scholar 

  • Mallick S, Adhikari S (2015) Amplitude-variation-with-offset and prestack-waveform inversion: a direct comparison using a real data example from the Rock Springs Uplift, Wyoming, USA. Geophysics 80(2):B45–B59

    Google Scholar 

  • Mallick S, Frazer L (1987) Practical aspects of reflectivity modeling. Geophysics 52(10):1355–1364

    Google Scholar 

  • Mallick S, Frazer L (1990) Computation of synthetic seismograms for stratified azimuthally anisotropic media. J Geophys Res 95:8513–8526

    Google Scholar 

  • Ostrander W (1984) Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics 49(10):1637–1648

    Google Scholar 

  • Padhi A, Mallick S (2013) Accurate estimation of density from the inversion of multicomponent prestack seismic waveform data using a nondominated sorting genetic algorithm. Geophysics 32(1):94–98

    Google Scholar 

  • Padhi A, Mallick S (2014) Multicomponent pre-stack seismic waveform inversion in transversely isotropic media using a non-dominated sorting genetic algorithm. Geophys J Int 5(3):589

    Google Scholar 

  • Pafeng J, Mallick S, Sharma H (2016) Prestack waveform inversion of three-dimensional seismic data: an example from the Rock Springs Uplift, Wyoming, USA. Geophysics 82(1):B1–B12

    Google Scholar 

  • Pan X, Zhang G (2018) Model Parameterization and PP-wave amplitude versus angle and azimuth (AVAZ) direct inversion for fracture quasi-weakness in weakly anisotropic elastic media. Surv Geophys 39(5):937–964

    Google Scholar 

  • Pan X, Zhang G, Yin X (2018a) Azimuthal seismic amplitude variation with offset and azimuth inversion in weakly anisotropic media with orthorhombic symmetry. Surv Geophys 39(1):99–123

    Google Scholar 

  • Pan X, Zhang G, Yin X (2018b) Elastic impedance variation with angle and azimuth inversion for brittleness and fracture parameters in anisotropic elastic media. Surv Geophys 39(5):965–992

    Google Scholar 

  • Rüger A (1996) Reflection coefficients and azimuthal AVO analysis in anisotropic media. Golden, Colorado School of Mine

    Google Scholar 

  • Sen M, Roy I (2003) Computation of differential seismograms and iteration adaptive regularization in prestack waveform inversion. Geophysics 68(6):2026–2039

    Google Scholar 

  • Sen M, Stoffa P (1991) Nonlinear seismic waveform inversion in one dimension using simulated annealing. Geophysics 56(10):1624–1638

    Google Scholar 

  • Shuey R (1985) A simplification of the Zoeppritz equations. Geophysics 50(4):609–614

    Google Scholar 

  • Simmons J, Backus M (1994) AVO modeling and the locally converted shear wave. Geophysics 59(8):1237–1248

    Google Scholar 

  • Thomson W (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. Technometrics 34(1):113–114

    Google Scholar 

  • Yang Y, Engquist B (2018) Analysis of optimal transport and related misfit functions in full-waveform inversion. Geophysics 83(1):A7–A12

    Google Scholar 

  • Yang Y, Engquist B, Sun J, Hamfeldt BF (2018) Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion. Geophysics 83(1):R43–R62

    Google Scholar 

  • Zhang F, Dai R, Liu H (2015) High order approximation for scattering matrix in layered elastic medium and its application in pre-stack seismic inversion. J Petrol Sci Eng 131:210–217

    Google Scholar 

  • Zhi L, Chen S, Li X (2016) Amplitude variation with angle inversion using the exact Zoeppritz equations—theory and methodology. Geophysics 81(2):N1–N15

    Google Scholar 

  • Zoeppritz K, Erdbebnenwellen V (1919) On the reflection and penetration of seismic waves through unstable layers. Göttinger Nachrichten 1:66–84

    Google Scholar 

  • Zong Z, Yin X, Wu G (2013) Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio. Geophysics 78(6):N35–N42

    Google Scholar 

  • Zong Z, Yin X, Wu G (2015) Geofluid discrimination incorporating poroelasticity and seismic reflection inversion. Surv Geophys 36(5):659–681

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of the China Postdoctoral Science Foundation (Grant No. 2019M661716), the Fundamental Research Funds for the Central Universities, China (Grant No. B200202135), and the National Natural Science Foundation of China (Grant No. 41974123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

From Eq. (2), the partial derivatives of \({\mathbf{T}}\left( 0\right)\) and \({\mathbf{T}}\left( h \right)\) with respect to the parameters \(m^{{ * { = }\alpha ,\beta ,\rho }}\) are

$$\frac{{\partial {\mathbf{T}}\left( 0\right)}}{{\partial m^{ * } }} = i\omega \left[ {\begin{array}{*{20}c} {\frac{{\partial \xi_{\text{P}} }}{{\partial m^{*} }}} & {\frac{{\partial \xi_{\text{S}} }}{{\partial m^{*} }}} & {\frac{{\partial \xi_{\text{P}} }}{{\partial m^{*} }}} & {\frac{{\partial \xi_{\text{S}} }}{{\partial m^{*} }}} \\ { - \frac{{\partial \gamma_{\text{P}} }}{{\partial m^{*} }}} & { - \frac{{\partial \gamma_{\text{S}} }}{{\partial m^{*} }}} & {\frac{{\partial \gamma_{\text{P}} }}{{\partial m^{*} }}} & {\frac{{\partial \gamma_{\text{S}} }}{{\partial m^{*} }}} \\ { - \frac{{\partial X_{\text{P}} }}{{\partial m^{*} }}} & { - \frac{{\partial X_{\text{S}} }}{{\partial m^{*} }}} & { - \frac{{\partial X_{\text{P}} }}{{\partial m^{*} }}} & { - \frac{{\partial X_{\text{S}} }}{{\partial m^{*} }}} \\ {\frac{{\partial W_{\text{P}} }}{{\partial m^{*} }}} & {\frac{{\partial W_{\text{S}} }}{{\partial m^{*} }}} & { - \frac{{\partial W_{\text{P}} }}{{\partial m^{*} }}} & { - \frac{{\partial W_{\text{S}} }}{{\partial m^{*} }}} \\ \end{array} } \right] ,$$
(40)

and

$$\begin{aligned} \frac{{\partial {\mathbf{T}}\left( h \right)}}{{\partial m^{ * } }} = & \left[ {\begin{array}{*{20}c} {i\omega s_{\text{P}} h\xi_{\text{P}} + \frac{{\partial \xi_{\text{P}} }}{{\partial m^{*} }}} & {i\omega s_{\text{S}} h\xi_{\text{S}} + \frac{{\partial \xi_{\text{S}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{P}} h\xi_{\text{P}} { + }\frac{{\partial \xi_{\text{P}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{S}} h\xi_{\text{S}} { + }\frac{{\partial \xi_{\text{S}} }}{{\partial m^{*} }}} \\ { - i\omega s_{\text{P}} h\gamma_{\text{P}} - \frac{{\partial \gamma_{\text{P}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{S}} h\gamma_{\text{S}} - \frac{{\partial \gamma_{\text{S}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{P}} h\xi_{\text{P}} + \frac{{\partial \gamma_{\text{P}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{S}} h\xi_{\text{S}} + \frac{{\partial \gamma_{\text{S}} }}{{\partial m^{*} }}} \\ { - i\omega s_{\text{P}} hX_{\text{P}} - \frac{{\partial X_{\text{P}} }}{{\partial m^{*} }}} & { - i\omega s_{\text{S}} hX_{\text{S}} - \frac{{\partial X_{\text{S}} }}{{\partial m^{*} }}} & { \, i\omega s_{\text{P}} hX_{\text{P}} - \frac{{\partial X_{\text{P}} }}{{\partial m^{*} }}} & {i\omega s_{\text{S}} hX_{\text{S}} - \frac{{\partial X_{\text{S}} }}{{\partial m^{*} }}} \\ {i\omega s_{\text{P}} hW_{\text{P}} + \frac{{\partial W_{\text{P}} }}{{\partial m^{*} }}} & {i\omega s_{\text{S}} hW_{\text{S}} + \frac{{\partial W_{\text{S}} }}{{\partial m^{*} }}} & { \, i\omega s_{\text{P}} hW_{\text{P}} - \frac{{\partial W_{\text{P}} }}{{\partial m^{*} }}} & {i\omega s_{\text{S}} hW_{\text{S}} - \frac{{\partial W_{\text{S}} }}{{\partial m^{*} }}} \\ \end{array} } \right] \\ & \quad \cdot \left[ {\begin{array}{*{20}c} {i\omega e^{{i\omega s_{\text{P}} h}} } & {} & {} & {} \\ {} & {i\omega e^{{i\omega s_{\text{S}} h}} } & {} & {} \\ {} & {} & {i\omega e^{{ - i\omega s_{\text{P}} h}} } & {} \\ {} & {} & {} & {i\omega e^{{ - i\omega s_{\text{S}} h}} } \\ \end{array} } \right] \\ \end{aligned} .$$
(41)

Differentiating Eq. (4) with respect to model parameter \(m^{{ * { = }\alpha ,\beta ,\rho }}\), we obtain

$$\begin{aligned} \frac{\partial \xi }{{\partial m^{ * } }} = & \frac{1}{\xi }\left\{ {\frac{{\left( {\alpha s^{2} \frac{\partial \alpha }{{\partial m^{*} }} + \alpha^{2} s\frac{\partial s}{{\partial m^{*} }} + \beta p^{2} \frac{\partial \beta }{{\partial m^{*} }} + \beta^{2} p\frac{\partial p}{{\partial m^{*} }}} \right) \cdot \left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{2} } \right) - 2} \right]}}{{\left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{ 2} } \right) - 2} \right]^{2} }}} \right. \\ & \left. {\quad \frac{{\left. { - \left( {\alpha^{2} s_{{}}^{2} + \beta^{2} p^{2} - 1} \right) \cdot \left[ {\left( {p^{2} + s_{{}}^{2} } \right)\left( {\alpha \frac{\partial \alpha }{{\partial m^{*} }} + \beta \frac{\partial \beta }{{\partial m^{*} }}} \right) + \left( {\alpha^{2} + \beta^{2} } \right)\left( {p\frac{\partial p}{{\partial m^{*} }} + s\frac{\partial s}{{\partial m^{*} }}} \right)} \right.} \right]}}{{\left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{ 2} } \right) - 2} \right]^{2} }}} \right\} \\ \end{aligned} ,$$
(42)

and

$$\begin{aligned} \frac{\partial \gamma }{{\partial m^{ * } }} = & \frac{1}{\gamma }\left\{ {\frac{{\left( {\alpha p^{2} \frac{\partial \alpha }{{\partial m^{*} }} + \alpha^{2} p\frac{\partial s}{{\partial m^{*} }} + \beta s^{2} \frac{\partial \beta }{{\partial m^{*} }} + \beta^{2} s\frac{\partial s}{{\partial m^{*} }}} \right) \cdot \left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{2} } \right) - 2} \right]}}{{\left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{2} } \right) - 2} \right]^{2} }}} \right. \\ & \quad \left. {\frac{{\left. { - \left( {\alpha^{2} p^{2} + \beta^{2} s^{2} - 1} \right) \cdot \left[ {\left( {p^{2} + s^{2} } \right)\left( {\alpha \frac{\partial \alpha }{{\partial m^{*} }} + \beta \frac{\partial \beta }{{\partial m^{*} }}} \right) + \left( {\alpha^{2} + \beta^{2} } \right)\left( {p\frac{\partial p}{{\partial m^{*} }} + s\frac{\partial s}{{\partial m^{*} }}} \right)} \right.} \right]}}{{\left[ {\left( {\alpha^{2} + \beta^{2} } \right)\left( {p^{2} + s^{ 2} } \right) - 2} \right]^{2} }}} \right\} \\ \end{aligned} .$$
(43)

Using Eq. (3), the derivatives of the intermediate variables \(X\) and \(Z\) are

$$\begin{aligned} \frac{\partial X}{{\partial m^{ * } }} = & 2\alpha \rho \left( {\xi p + s\gamma } \right)\frac{\partial \alpha }{{\partial m^{ * } }} - 4\beta \rho \xi p\frac{\partial \beta }{{\partial m^{ * } }} + \left( {\alpha^{2} \xi p + \alpha^{2} \gamma s - 2\beta^{2} \xi p} \right)\frac{\partial \rho }{{\partial m^{ * } }} \\ & \quad { + }\,\left( {\alpha^{2} - 2\beta^{2} } \right)\rho p\frac{\partial \xi }{{\partial m^{ * } }} + \left( {\alpha^{2} - 2\beta^{2} } \right)\rho \xi \frac{\partial p}{{\partial m^{ * } }} + \alpha^{2} \rho s\frac{\partial \gamma }{{\partial m^{ * } }} + \alpha^{2} \rho \gamma \frac{\partial s}{{\partial m^{ * } }} \\ \end{aligned} ,$$
(44)

and

$$\begin{aligned} \frac{\partial W}{{\partial m^{ * } }} = & 2\beta \rho \left( {\gamma p + \xi s} \right)\frac{\partial \beta }{{\partial m^{ * } }} + \beta^{2} \left( {\gamma p + \xi s} \right)\frac{\partial \rho }{{\partial m^{ * } }} \\ & \quad + \beta^{2} \rho \left( {p\frac{\partial \gamma }{{\partial m^{ * } }} + \gamma \frac{\partial p}{{\partial m^{ * } }} + s\frac{\partial \xi }{{\partial m^{ * } }} + \xi \frac{\partial s}{{\partial m^{ * } }}} \right) \\ \end{aligned} .$$
(45)

The vertical slowness \(s\) is a function of the model parameters \(m^{*}\), and the corresponding derivatives are derived according to Eq. (5):

$$\frac{\partial s}{{\partial m^{ *} }} = \pm \frac{1}{2\sqrt 2 } \cdot \frac{{\left( {\sqrt {K_{1}^{2} - 4K_{2} K_{3} } \mp K_{1} } \right)\frac{{\partial K_{1} }}{{\partial m^{ *} }} - 2\frac{{\partial K_{2} }}{{\partial m^{ *} }}K_{3} - 2K_{2} \frac{{\partial K_{3} }}{{\partial m^{ *} }}}}{{\sqrt {\left( {K_{1}^{3} - 4K_{1}^{{}} K_{2} K_{3} } \right) \mp \left( {K_{1}^{2} - 4K_{2} K_{3} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} } }} ,$$
(46)

where

$$\frac{{\partial K_{1} }}{{\partial m^{ *} }}{ = } - \frac{ 2}{{\alpha^{ 3} }} \cdot \frac{\partial \alpha }{{\partial m^{ *} }} - \frac{ 2}{{\beta^{ 3} }} \cdot \frac{\partial \beta }{{\partial m^{ *} }} - 4p\frac{\partial p}{{\partial m^{ *} }} ,$$
(47a)
$$\frac{{\partial K_{2} }}{{\partial m^{ *} }}{ = 2}p\frac{\partial p}{{\partial m^{ *} }} + \frac{ 2}{{\alpha^{ 3} }} \cdot \frac{\partial \alpha }{{\partial m^{ *} }} ,$$
(47b)
$$\frac{{\partial K_{3} }}{{\partial m^{ *} }}{ = 2}p\frac{\partial p}{{\partial m^{ *} }} + \frac{ 2}{{\beta^{ 3} }} \cdot \frac{\partial \beta }{{\partial m^{ *} }} .$$
(47c)

The partial derivatives of P-wave velocity α, S-wave velocity β and density ρ, with respect to the parameters \(m^{{ * { = }\alpha ,\beta ,\rho }}\) are

$$\frac{\partial \alpha }{\partial \alpha } = 1,\;\frac{\partial \alpha }{\partial \beta } = 0,\;\frac{\partial \alpha }{\partial \rho } = 0,$$
(48a)
$$\frac{\partial \beta }{\partial \alpha }{ = }0,\;\frac{\partial \beta }{\partial \beta } = 1,\;\frac{\partial \beta }{\partial \rho } = 0,$$
(48b)
$$\frac{\partial \rho }{\partial \alpha } = 0,\;\frac{\partial \rho }{\partial \beta } = 0,\;\frac{\partial \rho }{\partial \rho } = 1.$$
(48c)

Based on the derivatives above, one can obtain the partial derivatives of the reflection coefficients and then the Fréchet derivatives.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Ba, J., Carcione, J.M. et al. Joint PP and PS Pre-stack Seismic Inversion for Stratified Models Based on the Propagator Matrix Forward Engine. Surv Geophys 41, 987–1028 (2020). https://doi.org/10.1007/s10712-020-09605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09605-5

Keywords

Navigation