Skip to main content

Advertisement

Log in

Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter (P) that controls the probability of spatial distribution of initial loads. Also, we use a “conservation” parameter (π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range (0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe S, Suzuki N (2005) Scale-free statistics of time interval between successive earthquakes. Phys A 350:588–596

    Article  Google Scholar 

  • Aki M (1965) Maximum likelihood estimate of b in the formulation log N= a-bM and its confidence limits. Bull Earthquake Res Inst Tokyo Univ 43:237–239

  • Andersen JV, Sornette D, Leung K (1997) Tricritical behaviour in rupture induced by disorder. Phys Rev Lett 78:2140–2143

    Article  Google Scholar 

  • Aragón LE, Jagla EA, Rosso A (2012) Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity. Phys Rev E 85:046112

    Article  Google Scholar 

  • de Arcangelis L, Godano C, Grasso JR, Lippiello E (2016) Statistical physics approach to earthquake occurrence and forecasting. Phys Rep 628:1–91

    Article  Google Scholar 

  • Bak P, Cheng K, Tang C (1990) A forest-fire model and some thoughts on turbulence. Phys Lett A 147:297–300

    Article  Google Scholar 

  • Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501

    Article  Google Scholar 

  • Baker GL and Gollub JB (1996) Chaotic dynamics: an introduction, 2nd ed . Cambridge: Cambridge University Press

  • Barriere B, Turcotte DL (1994) Seismicity and self-organized criticality. Phys Rev E 49:1151–1160

    Article  Google Scholar 

  • Belardinelli ME, Cocco M, Coutant O, Cotton F (1999) Redistribution of dynamic stress during coseismic ruptures: evidence for fault interaction and earthquake triggering. J Geophys Res 104:14925–14945

    Article  Google Scholar 

  • Borovkov K, Bebbington MS (2003) A stochastic two-node stress transfer model reproducing Omori's law. Pure Appl Geophys 160:1429–1445

    Article  Google Scholar 

  • Bowman DD, King GC (2001) Stress transfer and seismicity changes before large earthquakes. C R Acad Sci 333:591–599

    Google Scholar 

  • Brodsky EE (2006) Long-range triggered earthquakes that continue after the wave train passes. Geophys Res Lett 33:L15313

    Article  Google Scholar 

  • Carlson JM, Langer JS (1989) Mechanical model of an earthquake fault. Phys Rev A 40:6470–6484

    Article  Google Scholar 

  • Coleman BD (1957) Time dependence of mechanical breakdown in bundles of fibers I constant total load. J Appl Phys 27:1058–1064

    Article  Google Scholar 

  • Corral A (2003) Local distributions and rate fluctuations in a unified scaling law for earthquakes. Phys Rev E 68:035102

    Article  Google Scholar 

  • Correig AM, Urquizú M, Vila J (1997) Aftershock series of event February 18, 1996: an interpretation in terms of self-organized criticality. J Geophys Res 102:27407–27420

    Article  Google Scholar 

  • Curtin WA (1991) Theory of mechanical properties of ceramic matrix composites. J Am Ceram Soc 74:2837–2845

    Article  Google Scholar 

  • Daniels HE (1945) The statistical theory of the strength of bundles of threads. Proc R Soc Lond A 183:404–435

    Article  Google Scholar 

  • Darooneh AH, Dadashinia C (2008) Analysis of the spatial and temporal distribution between succesive earthquakes: nonextensive statistical mechanics viewpoint. Phys A 387:3647–3654

    Article  Google Scholar 

  • El-Isa ZH, Eaton DW (2014) Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: classification and causes. Tectonophysics 615:1–11

    Article  Google Scholar 

  • Felzer KR, Abercrombie RE, Ekström G (2004) A common origin for aftershocks, foreshocks, and multiplets. Bull Seismol Soc Am 94:88–98

    Article  Google Scholar 

  • Felzer KR, Brodsky EE (2005) Testing the stress shadow hypothesis. J Geophys Res 110:B05S09

    Article  Google Scholar 

  • Felzer KR, Brodsky EE (2006) Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 441:735–738

    Article  Google Scholar 

  • Fereidoni A, Atkinson GM (2014) Aftershock statistics for earthquakes in the St. Lawrence Valley. Seismol Res Lett 85(5):1125–1136

    Article  Google Scholar 

  • Freed AM (2005) Earthquake triggering by static, dynamic and postseismic stress transfer. Annu Rev Earth Planet Sci 33:335–367

    Article  Google Scholar 

  • Frohlich C, Davis SD (1993) Teleseismic b-values-or, much ado about 1.0. J Geophys Res 98:631–644

    Article  Google Scholar 

  • Geoffrey CP, King RS, Stein S, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953

    Google Scholar 

  • Gomberg J, Blanpied ML, Beeler NM (1997) Transient triggering of near and distant earthquakes. Bull Seismol Soc Am 87(2):294–309

    Google Scholar 

  • Gomberg J, Beeler NM, Blanpied ML, Bodin P (1998) Earthquake triggering by transient and static deformations. J Geophys Res 103:24411–24426

    Article  Google Scholar 

  • Gomberg J, Bodin P, Reasenberg PA (2003) Observing earthquakes triggered in the near field by dynamic deformations. Bull Seismol Soc Am 93:118–138

    Article  Google Scholar 

  • Gómez JB, Moreno Y, Pacheco AF (1998) Probabilistic approach to time-dependent load-transfer models of fracture. Phys Rev E 58:1528–1532

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D 9:189–208

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Gutenberg G, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1

    Google Scholar 

  • Hainzl S, Brietzke GB, Zöller G (2010) Quantitative earthquake forecasts resulting from static stress triggering. J Geophys Res 15:B11311

    Article  Google Scholar 

  • Hanks TC, Bakun WH (2008) M-logA observations for recent large earthquakes. Bull Seismol Soc Am 98:490–494

    Article  Google Scholar 

  • Hardebeck JL, Nazareth JJ, Hauksson E (1998) The static stress change triggering model: constraints from southern California aftershock sequences. J Geophys Res 103:24427–24437

    Article  Google Scholar 

  • Hauksson E (2010) Spatial separation of large earthquakes, aftershocks, and background seismicity: analysis of interseismic and coseismic seismicity patterns in Southern California. Pure Appl Geophys 167:979–997

    Article  Google Scholar 

  • Helmstetter A (2003) Is earthquake triggering driven by small earthquakes? Phys Rev Lett 91:0585011–0585014

    Article  Google Scholar 

  • Herrmann HJ, Roux S (eds) (1990) Statistical models for the fracture of disordered media. Random materials and processes. Elsevier, North-Holland, Amsterdam

    Google Scholar 

  • Hirata T (1989) Correlation between the b-value and the fractal dimension of earthquakes. J Geophys Res 94:7507–7514

    Article  Google Scholar 

  • Hirata T, Satoh T, Ito K (1987) Fractal structure of spatial distribution of microfracturing in rock. Geophys J R Astron Soc 90:369–374

    Article  Google Scholar 

  • Holliday JR, Turcotte DL, Rundle JB (2008) Self-similar branching of aftershock sequences. Phys A 387:933–943

    Article  Google Scholar 

  • Jagla EA (2010) Realistic spatial and temporal earthquake distributions in a modified Olami-Feder-Christensen model. Phys Rev E 81:046117

    Article  Google Scholar 

  • Jagla EA, Kolton AB (2010) A mechanism for spatial and temporal earthquake clustering. J Geophys Res 115(B5). doi:10.1029/2009JB006974

  • Kagan YY, Knopoff L (1980) Spatial distribution of earthquakes the two-point correlation function. Geophys J R Astron Soc 62:303–320

    Article  Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095

    Google Scholar 

  • Kilb D, Gomberg J, Bodin P (2000) Triggering of earthquake aftershocks by dynamic stresses. Nature 408:570–574

    Article  Google Scholar 

  • Kilb D, Gomberg J, Bodin P (2002) Aftershock triggering by complete Coulomb stress changes. J Geophys Res 107(B4):2060

    Article  Google Scholar 

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953

    Google Scholar 

  • King GC, Bowman DD (2003) The evolution of regional seismicity between large earthquakes. J Geophys Res 108. doi:10.1029/2001JB000783

  • Kisslinger C (1996) Aftershocks and fault zone properties. Adv Geophys 38:1–36

    Article  Google Scholar 

  • Kloster M, Hansen A, Hemmer PC (1997) Burst avalanches in solvable models of fibrous materials. Phys Rev E 56:2615–2625

    Article  Google Scholar 

  • Krajinovic D (1996) Damage mechanics. Elseiver, New York 791 pp

    Google Scholar 

  • Kroll KA (2012) Complex faulting in the Yuha desert: implications for fault interaction. M. Sc Thesis, University of California, Riverside, 83 pp

  • Kun F, Raischel F, Hidalgo RC, Hermann HJ (2006a) Extensions of fiber bundle models for creep rupture and interface failure. Int J Fract 140:255–265

  • Kun F, Raischel F, Hidalgo RC, Hermann HJ (2006b) Extensions of fiber bundle models. Lect Notes Phys 705:57–92

  • Landes FP, Lippiello E (2016) Scaling laws in earthquake ocurrence: disorder, viscosity and finite size effects in Olami-Feder-Christensen models. Phys Rev E 93:051001

    Article  Google Scholar 

  • Liu J, Kerry S, Hauksson E (2003) A structural interpretation of the aftershock “cloud” of the 1992 M w 7.3 Landers earthquake. Bull Seismol Soc Am 93(3):1333–1344

    Article  Google Scholar 

  • Lippiello E, de Arcangelis L and Godano, C (2009) Role of Static Stress difussion in the Spatiotemporal organization of aftershocks. Phys Rev Lett 103: 038501

  • Ma K, Chan C (2005) Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake. J Geophys Res 110:B05S19

    Article  Google Scholar 

  • Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. Pure Appl Geophys 131(1):5–42

    Article  Google Scholar 

  • Márquez-Rámirez VH, Nava FA, Reyes-Dávila G (2012) Multifractality in seismicity spatial distributions: significance and possible precursory applications as found for two cases in different tectonic environments. Pure Appl Geophys 169(12):2091–2105

    Article  Google Scholar 

  • Monterrubio-Velasco M (2013) Statistical analysis and fractal behavior of the southern California aftershocks. Ph.D. Dissertation, Universitat Politècnica de Catalunya, Barcelona, 281 pp

  • Monterrubio-Velasco MM, Lana X, Martínez MD (2015) Two complementary stress release processes based on departures from Omori's law. Geosci J 19(1):81–95

    Article  Google Scholar 

  • Moral L, Gómez JB, Moreno Y, Pacheco AF (2001a) Exact numerical solution for a time-dependent fiber-bundle model with continuous damage. J Phys A 34:9983–9991

    Article  Google Scholar 

  • Moral L, Moreno Y, Gómez JB, Pacheco AF (2001b) Time dependence of breakdown in a global fiber-bundle model with continuous damage. Phys Rev A 63:066106

    Google Scholar 

  • Moreno Y, Gómez JB, Pacheco AF (1999) Self-organized criticality in a fiber-bundle type model. Phys A 274:400–409

    Article  Google Scholar 

  • Moreno Y, Correig AM, Gomez JB, Pacheco AF (2001) A model for complex aftershock sequences. J Geophys Res 106(B4):6609–6619

    Article  Google Scholar 

  • Nalbant SS, Hubert-Ferrari A, King GCP (1998) Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. J Geophys Res 103:24469–24486

    Article  Google Scholar 

  • Nanjo KZ, Turcotte DL (2005) Damage and rheology in a fiber-bundle model. Geophys J Int 162:859–866

    Article  Google Scholar 

  • Newman WI, Turcotte DL, Gabrielov AM (1995) Log-periodic behavior of a hierarchical failure model with applications to precursory seismic activation. Phys Rev E 52:4827–4835

    Article  Google Scholar 

  • Newman WI, Phoenix SL (2001) Time dependent fiber-bundles with local load sharing. Phys Rev E 63:021507

    Article  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquakes occurrences and residual analysis for point process. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Ogata Y (1999) Seismicity analysis through point-process modeling: a review. Pure Appl Geophys 155:471–507

    Article  Google Scholar 

  • Ogata Y (2010) Space–time heterogeneity in aftershock activity. Geophys J Int 181:1575–1592

    Google Scholar 

  • Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68:1244

    Article  Google Scholar 

  • Oluwole EY, Moreno Y, Ferenc K, Hidalgo RC, Herrmann HJ (2003) Time evolution of damage under variable ranges of load transfer. Phys Rev E 68:026116

    Article  Google Scholar 

  • Omori F (1894) On the aftershocks of earthquakes. J Coll Sci, Imp Univ Tokyo 7:111–200

    Google Scholar 

  • Oncel AO, Wilson TH (2002) Space-time correlations of seismotectonic parameters: examples from Japan and Turkey preceding the Izmith earthquake. Bull Seismol Soc Am 92:339–349

    Article  Google Scholar 

  • Papadakis G, Vallianatos F, Sammonds P (2013) Evidence of nonextensive statistical physics behavior of the Hellenic subduction zone seismicity. Tectonophysics 608:1037–1048

    Article  Google Scholar 

  • Peires FT (1926) Tensile tests for cotton yarns: “the weakest link”, theorems on strength of long composite specimens. J Text Inst 17:T355–T368

    Article  Google Scholar 

  • Peitgen HO and Richter DH (1986) The beauty of fractals: images of complex dynamical systems . New York: Springer-Verlag

  • Peltzer G, Rosen P, Rogez F, Hudnut K (1998) Poroelastic rebound along the Landers 1992 earthquake surface rupture. J Geophys Res 103:30131–30145

    Article  Google Scholar 

  • Phoenix SL (1977) Stochastic strength and fatigue in fiber bundles. Int J Fract 14:327–344

    Google Scholar 

  • Phoenix SL, Tierney L (1983) A statistical model for the time-dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Eng Fract Mech 18:193–215

    Article  Google Scholar 

  • Phoenix SL, Beyerlein IJ (2000) Statistical strength theory for fibrous composite materials. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Pergamon-Elsevier Science, New York 1 chapter 1.19, 1–81 pp

    Google Scholar 

  • Pradhan S, Chakrabarti BK (2003) Failure properties of fiber bundle models. Int J Mod Phys B 17:5565–5581

    Article  Google Scholar 

  • Pradhan S, Hansen A, Chakrabarti BK (2010) Failure processes in elastic fiber bundles. Rev Mod Phys 82:499–555

    Article  Google Scholar 

  • Roy PNS, Ram A (2006) A corrrelation integral approach to the study of 26 January 2001 Bhuj earthquake, Gujarat, India. J Geodyn 41:385–399

    Article  Google Scholar 

  • Rundle JB, Turcotte DL, Shcherbakov R, Klein W, Sammis C (2003) Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev Geophys 41:4

    Article  Google Scholar 

  • Scholz C (1968) The frequency–magnitude relation of micro fracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:388–415

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  Google Scholar 

  • Shcherbakov R, Turcotte DL, Rundle JB (2005) Aftershock statistics. Pure Appl Geophys 162:1051–1076

    Article  Google Scholar 

  • Smith RL, Phoenix SL (1981) Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing. J Appl Mech 48:75–82

    Article  Google Scholar 

  • Sornette D (1989) Elasticity and failure of a set of elements loaded in parallel. J Phys A 22:L243–L250

    Article  Google Scholar 

  • Sornette D (1992) Mean-field solution of a block-spring model of earthquakes. J Phys I France 2:2089

    Article  Google Scholar 

  • Sornette D, Anderson JV (1998) Scaling with respect to disorder in time-to failure. Eur Phys J B 1:353–357

    Article  Google Scholar 

  • Stein RS, Barka AA, Dieterich JH (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int 128:594–604

    Article  Google Scholar 

  • Stein S, Wysession M (2008) An introduction to seismology, Earthquakes and earth structure. Blackwell Publishers, Malden

    Google Scholar 

  • Toda S, Stein RS, Reasenberg PA, Dieterich JH, Yoshida A (1998) Stress transfer by the Mw=6.9 Kobe, Japan earthquake: effect on aftershocks and future earthquakes probabilities. J Geophys Res 103:24543–24565

    Article  Google Scholar 

  • Tormann T, Wiemer S, Mignan A (2014) Systematic survey of high-resolution b value imaging along Californian faults: inference on asperities. J Geophys Res Solid Earth 119:2029–2054

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, 398 pp

  • Turcotte DL, Malamud BD, Morein G, Newman WI (1999) An inverse-Cascade model for self-organized critical behavior. Phys A 268:629–643

    Article  Google Scholar 

  • Turcotte DL, Newman WI, Scherbakov R (2003) Micro and macroscopic models of rock fracture. Geophys J Int 152:718–728

    Article  Google Scholar 

  • Utsu T (1969) Aftershocks and earthquake statistics: some parameters which characterize an aftershock sequence and their interrelations. Faculty of Science, Hokkaido University 3:129

  • Utsu T, Ogata Y, Matsu'ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33

    Article  Google Scholar 

  • Vázquez-Prada M, Gómez JB, Moreno Y, Pacheco AF (1999) Time to failure of hierarchical load-transfer models of fracture. Phys Rev E 60(3):2581–2594

    Article  Google Scholar 

  • Venkatamaran A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B05302

    Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys 45:259–302

    Article  Google Scholar 

Download references

Acknowledgments

MMV thanks to the postdoctoral program CONACYT-BSC. This research was partially funded through grant UNAM-PAPIIT IN108115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol Monterrubio-Velasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monterrubio-Velasco, M., Zúñiga, F.R., Márquez-Ramírez, V.H. et al. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model. J Seismol 21, 1623–1639 (2017). https://doi.org/10.1007/s10950-017-9687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-017-9687-8

Keywords

Navigation