Skip to main content

Advertisement

Log in

Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection (P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to-S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825–829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology. Chapter 5: Plane waves in homogeneous media and their reflection and transmission at a plane boundary. University Science Books, Philadelphia

    Google Scholar 

  • Arnulf AF, Singh SC, Pye JW (2014b) Seismic evidence of a complex multi-lens melt reservoir beneath the 9°N overlapping spreading center at the East Pacific Rise. Geophys Res Lett 41(17):6109–6115. doi:10.1002/2014GL060859

    Article  Google Scholar 

  • Arulf AF, Harding AJ, Kent GM, Carbotte SM, Canales JP, Nedimović MR (2014a) Atonamy of an active submarine volcano. Geology 42(8):655–658. doi:10.1130/G35629.1

    Article  Google Scholar 

  • Brekhovskikh LM (1960) Waves in Layered Media. Academic Press, New York, pp 318–324

    Google Scholar 

  • Canales JP, Singh SC, Detrick RS, Carbotte SM, Harding AJ, Kent GM, Diebold JB, Babcock J, Nedimović MR (2006) Seismic evidence for variations in axial magma chamber properties along the southern Juan de Fuca Ridge. Earth Planet Sci Lett 246:353–366. doi:10.1016/j.epsl.2006.04.032

    Article  Google Scholar 

  • Červený V, Ravindra R (1971) Theory of Seismic Head Waves. University of Toronto Press, Toronto, p. 312. doi:10.1016/0016-7142(73)90043-4

    Book  Google Scholar 

  • Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. B Seismol Soc Am 67(6):1529–1540

    Google Scholar 

  • Collier JS, Singh SC (1997) Detailed structure of the top of the melt body beneath the East Pacific Rise at 9°40′N from waveform inversion of seismic reflection data. J Geophys Res 102(B9):20287–20304. doi:10.1029/97JB01514

    Article  Google Scholar 

  • Detrick RS, Buhl P, Vera EE, Mutter JC, Orcutt JA, Madsen JA, Brocher TM (1987) Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41. doi:10.1038/326035a0

    Article  Google Scholar 

  • Dougherty ME, Stephen RA (1991) Seismo/acoustic propagation through rough seafloors. J Acoust Soc Am 90(90):2637–2651. doi:10.1121/1.402067

    Article  Google Scholar 

  • Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J Geophys Res 105(B10):23537–23555. doi:10.1029/2000JB900210

    Article  Google Scholar 

  • Ergin K (1952) Energy ratio of the seismic waves reflected and refracted at a rock-water boundary. B Seismol Soc Am 42(4):349–372

    Google Scholar 

  • Han S, Carbotte SM, Carton H, Mutter JC, Aghaei O, Nedimovic MR, Canales JP (2014) Architecture of off-axis magma bodies at EPR 9°37–40′N and implications for oceanic crustal accretion. Earth Planet Sci Lett 390:31–44. doi:10.1016/j.epsl.2013.12.040

    Article  Google Scholar 

  • Herron TJ, Stoffa PL, Buhl P (1980) Magma chamber and mantle reflections-East Pacific Rise. Geophys Res Lett 7(11):989–992. doi:10.1029/GL007i011p00989

    Article  Google Scholar 

  • Higdon RL (1986) Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. Math Comput 47(176):437–459. doi:10.2307/2008166

    Google Scholar 

  • Hussenoeder SA, Collins JA, Kent GM, Detrick RS, the TERA Group (1996) Seismic analysis of the axial magma chamber reflector along the southern East Pacific Rise from conventional reflection profiling. J Geophys Res 101(B10):22087–22105. doi:10.1029/96JB01907

    Article  Google Scholar 

  • Karson JA, Klein EM, Hurst SD, Lee CE, Rivizzigno PA, Curewitz D, Morris AR, Party HDS (2002) Structure of uppermost fast-spreading oceanic crust exposed at the Hess Deep Rift: implications for subaxial processes at the East Pacific Rise. Geochem Geophys Geosyst 3(1):1–10. doi:10.1029/2001GC000155

    Article  Google Scholar 

  • Kent GM, Harding AJ, Orcutt JA (1990) Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′N. Nature 344(6267):650–653. doi:10.1038/344650a0

    Article  Google Scholar 

  • Kent GM, Harding AJ, Orcutt JA (1993a) Distribution of magma beneath the East Pacific Rise near the 9°03′N overlapping spreading center from forward modeling of common depth point data. J Geophys Res 98(B8):13971–13995. doi:10.1029/93JB00706

    Article  Google Scholar 

  • Kent GM, Harding AJ, Orcutt JA (1993b) Distribution of magma beneath the East Pacific Rise between the Clipperton transform and the 9°17′N deval from forward modeling of common depth point data. J Geophys Res 98(B8):13945–13969. doi:10.1029/93JB00705

    Article  Google Scholar 

  • Kent GM, Detrick RS, Swift SA, Collins JA, Kim II (1997) Evidence from Hole 504B for the origin of dipping events in oceanic crustal reflection profiles as out-of-plane scattering from basement topography. Geology 25(2):131–134. doi:10.1130/0091-7613

    Article  Google Scholar 

  • Korenaga J, Kelemen PB (1997) Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J Geophys Res 102(B12):27729–27749. doi:10.1029/97JB02604

    Article  Google Scholar 

  • Marjanović M, Carbotte SM, Carton H, Nedimović MR, Mutter JC, Canales JP (2014) A multi-sill magma plumbing system beneath the axis of East Pacific Rise. Nat Geosci 7(11):825–829. doi:10.1038/ngeo2272

    Article  Google Scholar 

  • Marjanović M, Fuji N, Singh SC, Belahi T (2016) Seismic signatures of up- and down-going hydrothermal pathways along the East Pacific Rise 9ºN. AGU Fall Meeting Abstracts T22C-05

  • Mutter JC, Carbotte SM, Canales JP, Nedimovic MR (2008) MGL0812 Cruise Report: a three-dimensional MCS investigation of the magmatic-hydrothermal system at the East Pacific Rise 9°50′N

  • Nafe JE (1957) Reflection and transmission coefficients at a solid-solid interface of high velocity contrast. Bull Seismol Soc Am 47(3):205–219

    Google Scholar 

  • Reynolds AC (1978) Boundary conditions for the numerical solution of wave propagation problems. Geophysics 43(6):1099–1110. doi:10.1190/1.1440881

    Article  Google Scholar 

  • Singh SC, Kent GM, Collier JS, Harding AJ, Orcutt JA (1998) Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394:874–878. doi:10.1038/29740

    Article  Google Scholar 

  • Singh SC, Collier JS, Harding AJ, Kent GM, Orcutt JA (1999) Seismic evidence for a hydrothermal layer above the solid roof of the axial magma chamber at the southern East Pacific Rise. Geology 27(3):219–222. doi:10.1130/0091-7613

    Article  Google Scholar 

  • Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Canales JP, Dusunur D, Escartín J, Miranda MJ (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032. doi:10.1038/nature05105

    Article  Google Scholar 

  • Stephen RA (1990) Solutions to range-dependent benchmark problems by the finite-difference method. J Acoust Soc Am 87(4):1527–1534. doi:10.1121/1.399452

    Article  Google Scholar 

  • Stephen RA, Bolmer ST (1985) The direct wave root in marine seismology. Bull Seismol Soc Am 75(1):57–67

    Google Scholar 

  • Stephen RA, Swift SA (1994) Modeling seafloor geoacoustic interaction with a numerical scattering chamber. J Acoust Soc Am 96(2):973–990. doi:10.1121/1.410271

    Article  Google Scholar 

  • Swift SA, Dougherty ME, Stephen RA (1990) Finite difference seismic modeling of Axial Mamga Chambers. Geophys Res Lett 17(12):2105–2108. doi:10.1029/GL017i012p02105

    Article  Google Scholar 

  • Vera EE, Mutter JC, Buhl P, Orcutt JA, Harding AJ, Kappus ME, Detrick RS, Brocher TM (1990) The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. J Geophys Res 95(B10):15529–15556. doi:10.1029/JB095iB10p15529

    Article  Google Scholar 

  • Xu M, Canales JP, Carbotte SM, Carton H, Nedimović MR, Mutter JC (2014) Variations in axial magma lens properties along the East Pacific Rise (9°30N’-10°00′N) from swath 3-D seismic imaging and 1-D waveform inversion. J Geophys Res 119:2721–2744. doi:10.1002/2013JB010730

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108(1):16–34. doi:10.1111/j.1365-246X.1992.tb00836.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank editor Roger Urgeles and three other anonymous reviewers for their thoughtful and insightful comments and suggestions. We thank Tom Bolmer and Steve Swift for setting up the workstation for our time-domain finite difference seismic modeling. We thank Milena Marjanović for sharing the migration image. This research is funded by Hundred-Talent Program of Chinese Academy of Science (M. Xu) and National Natural Science Foundation of China Grant 41676044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Stephen, R.A. & Canales, J.P. Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill. Mar Geophys Res 38, 373–391 (2017). https://doi.org/10.1007/s11001-017-9303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-017-9303-x

Keywords

Navigation