Skip to main content

Advertisement

Log in

Coastal erosion risk assessment to discuss mitigation strategies: Barra-Vagueira, Portugal

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Worldwide coastal zones present serious erosion problems that cause loss of territory. This phenomenon exposes people and goods to the threat, being necessary to carry out a well-founded management of these areas. Coastal erosion risk assessment methodologies are an important tool for coastal management. The main goal of the present study was to evaluate and discuss coastal management strategies based on the application of a methodology of coastal erosion risk classification, allowing easy comparison of scenarios. The study was developed for the Portuguese coastal stretch Barra-Vagueira. CERA methodology and its plugin for QGIS software were applied in order to assess the erosion risk of Barra-Vagueira stretch for different coastal erosion mitigation scenarios. First, an analysis of the coastal erosion risk was carried out based on bibliographic elements and present situation characterization. Subsequently, the erosion risk was assessed considering defence, relocation and nourishment strategies scenarios and climate change scenarios. The study based on bibliographic elements shows that the coastal region between Barra and Vagueira has a high risk of coastal erosion. Generally, the different scenarios tested represent variations on coastal erosion risk classification, allowing a simple first approach to evaluate coastal erosion mitigation scenarios, helping planning and decision-makers. Performing measures that allow to constrain the shoreline retreat, as artificial nourishments, leads to greater benefits in reducing the area of the territory classified with higher risk. New coastal defence structures allow to mainly decrease the stretch's susceptibility to coastal erosion. The relocation of population leads to a decrease in the area of the territory classified as very high-risk. Climate change increases the erosion risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alves F, Roebeling PC, Pinto P, Batista P (2009) Valuing ecosystem service losses from coastal erosion along the central Portuguese coast: a benefits transfer approach. J Coastal Res 56:1169–1173

    Google Scholar 

  • ANCRIM (2017) Overview of soft coastal protection solutions. Atlantic Network for Coastal Risks Management, p 56

  • Andrade C, Freitas M, Cachado C, Cardoso A, Monteiro J, Brito P, Rebelo L (2002) Coastal Zones. In: Santos F, Forbes K, Moita R (eds) Climate Change in Portugal-Scenarios, Impacts and Adaptation Measures. Gradiva-Publication, Lda, Lisbon, Portugal, pp 173–219

    Google Scholar 

  • Andrade C, Pires HO, Taborda R, Freitas MC (2007) Projecting future changes in wave climate and coastal response in Portugal by the end of the twenty first century. J Coastal Res SI 50:253–258

    Google Scholar 

  • Antunes C, Taborda R (2009) Sea level at Cascais tide gauge: data, analysis and results. In: Proceedings of the 10th International Coastal Symposium. J Coastal Res SI, vol 56, pp 218–222. Lisbon, Portugal

  • APA (2009) Projeto de Reconfiguração da Barra do Porto de Aveiro. APA - Portuguese Environmental Agency (in Portuguese)

  • APA (2020) Remoção de Inertes do Porto de Aveiro, Para Reforço do Cordão Litoral a Sul da Costa Nova. Communication to Social Communication, APA-Portuguese Environmental Agency (in Portuguese)

  • Coelho C (2005) Riscos de Exposição de Frentes Urbanas para Diferentes Intervenções de Defesa Costeira. Ph.D. Thesis, Aveiro University, p 404 (in Portuguese)

  • Coelho C, Conceição T, Ribeiro B (2009a) Coastal erosion due to anthropogenic impacts on sediment transport in Douro river—Portugal. In: Mizuguchi, M., Sato, S. (Eds.), Proceedings of Coastal Dynamics 2009. World Scientific, pp 1–15, Tokyo, Japan

  • Coelho C, Silva R, Veloso-Gomes F, Taveira-Pinto F (2009) Potential impacts of climate change on NW Portuguese coastal zones. ICES J Mar Sci 66:1497–1507

    Article  Google Scholar 

  • Coelho C, Narra P, Marinho B, Lima M (2020) Coastal management software to support decision-makers to mitigate coastal erosion. J Marine Sci Eng 2020(8):37

    Article  Google Scholar 

  • Dias J, Ferreira Ó, Pereira A (1994) Estudo Sintético da Geomorfologia e da Dinâmica Sedimentar dos Troços Costeiros entre Espinho e Nazaré. ESAMIN (Estudos de Ambiente e Informática, Lda), Lisbon, Portugal (in Portuguese). Site: https://w3.ualg.pt/~jdias/JAD/eb_EspinhoNazare.html (in Portuguese)

  • Dias J, Antunes C, Polette M (2009) As zonas costeiras no contexto de recursos marinhos. Rev Gestão Costeira Int 9(1):3–5 (in Portuguese)

    Article  Google Scholar 

  • Doody P, Ferreira M, Lombardo S, Lucius I, Misdrop R, Niesing H, Salman A, Smallegange M, Gomes FV, Taveira-Pinto F, Neves L, Pais-Barbosa J (2008) Viver com a Erosão Costeira na Europa. Sedimentos e Espaço para a Sustentabilidade, Eurosion, p 39

    Google Scholar 

  • EEA (2016a) Copernicus Land Monitoring Service - European Digital Elevation Model (EU-DEM), version 1.1. European Environmental Agency. Copenhagen, Denmark

  • EEA (2016b) Copernicus Land Service - Corine Land Cover (CLC) 2012, Version 18.5.1 European Environmental Agency. Copenhagen, Denmark

  • EEA (2019) European Environment Agency. Site: https://www.eea.europa.eu/data-and-maps/indicators/ (visited in January of 2020)

  • Fernandéz-Fernandéz S, Baptista P, Bernardes C, Silva P, Fontán-Bouzas Á, Lópes-Olmedilla L, Ferreira C (2019) Variação da Linha de Costa em Praias Arenosas: Aveiro (Portugal). IX Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa, Lisbon, Portugal (in Portuguese)

  • Freire S, Halkia M, Pesaresi M (2016) GHS Population Grid, Derived from EUROSTAT Census Data (2011) and ESM 2016. European Commission. Joint Research Centre (JRC)

  • Google Earth (2019) Site: http:// earth.google.com/ (visited in November of 2019)

  • Heitor D (2014) Classificação da Intensidade Energética no Litoral de Espinho. Master Thesis, University Nova of Lisbon, Portugal (in Portuguese)

  • INE (2019) Instituto Nacional de Estatísticas. Site: www.ine.pt (visited in November of 2019)

  • IPCC (2014) Climate change 2014: Synthesis report. Intergovernmental Panel on Climate Change, p 155

  • Lima M, Coelho C, Veloso-Gomes F, Roebeling P (2020) An integrated physical and cost-benefit approach to assess groins as a coastal erosion mitigation strategy. Coast Eng 156:103614

    Article  Google Scholar 

  • Lira C, Silva A, Taborda R, Andrade C (2016) Coastline evolution of portuguese low-lying sandy coast in the last 50 years: an integrated approach. Earth Syst Sci Data Discuss 8(1):265–278. https://doi.org/10.5194/essd-2016-5

    Article  Google Scholar 

  • Marinho B, Coelho C, Larson M, Hanson H (2018) Short- and long-term responses of nourishments: Barra–Vagueira coastal stretch, Portugal. J Coastal Conserv 22:475–489

    Article  Google Scholar 

  • MarRisk (2017) Adaptação Costeira às Alterações Climáticas: conhecer os riscos e aumentar a resiliência. Projeto INTERREG Espanha-Portugal (POCTEP)

  • Narra P, Coelho C, Fonseca J (2015) Sediment Grain Size Variation Along a Cross-Shore Profile Representative d50. J Coast Conserv 19(3):307–320

    Article  Google Scholar 

  • Narra P (2018) CERA: GIS-Based Assessment of Coastal Erosion Risk. Aveiro University, Ph.D. Thesis, Aveiro University, p 262

  • Narra P, Coelho C, Sancho F (2019) Multicriteria GIS-based estimation of coastal erosion risk: implementation to Aveiro sandy. Coast ocean and coastal management. Elsevier, Portugal, p 19

    Google Scholar 

  • Narra P, Coelho C, Sancho F, Escudero M, Silva R (2019) Coastal hazard assessments for sandy coast: appraisal of five methodologies. J Coastal Res 35:574–589

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Eds., pp 315–356. Cambridge University Press, Cambridge

  • OECD (2019) Responding to rising seas: OECD country approaches to tackling coastal risks. OECD Publ Paris, https://doi.org/10.1787/9789264312487-en

    Article  Google Scholar 

  • OSM (2019) OpenStreetMap. Site: https://www.openstreetmap.org (visited in December of 2019).

  • PDM-Ílhavo (2013) Revisão Plano Diretor Municipal Ílhavo: Estudos de caracterização – Demografia e Caracterização Socioeconómica. Municipal Council of Ílhavo, p 37. (in portuguese)

  • Pelnard-Considère R (1956) Essai de theorie de l’evolution des formes de rivage en plages de sable et de galets. Les Energies de La Mer: Compte Rendu Des Quatriemes Journees de L’hydraulique. Société hydrotechnique de France, Paris, France, pp 289–298

    Google Scholar 

  • Pereira C, Coelho C (2013) Mapping erosion risk under different scenarios of climate change for Aveiro coast, Portugal. Nat Hazards Elsevier 69:1033–1050

    Article  Google Scholar 

  • Pinto C, Silveira T, Teixeira S (2018) Alimentação Artificial de Praias na Faixa Costeira de Portugal Continental: Enquadramento e Retrospetivas das Intervenções Realizadas (1950-2017). Relatório Técnico. Agência Portuguesa do Ambiente (in Portuguese)

  • QGIS (2019) QGIS: a free and open source geographic information system. Site: www.qgis.org (visited in November of 2019).

  • Rangel-Buitrago N, Anfuso G, Williams A (2015) Coastal erosion along the Caribbean coast of Colombia: magnitudes, causes and management. Ocean Coast Manag J 114(114):129

    Article  Google Scholar 

  • REA (2019) Portal do Estado do Ambiente–Portugal. Site: https://rea.apambiente.pt (visited in December of 2019)

  • Roebeling PC, Coelho CD, Reis EM (2011) Coastal erosion and coastal defense interventions: a cost-benefit analysis. J Coastal Res 64:1415–1419

    Google Scholar 

  • Sancho F, Heitor D, Neves M (2013) Intensidade Energética sob Temporais Marítimos: Proposta de Metodologia e Aplicação ao Litoral de Espinho. Jornadas Portuguesas de Engenharia Costeira e Portuária, National Laboratory for Civil Engineering, Lisbon, Portugal, p 11

  • Santos F, Lopes A, Moniz G, Ramos L, Taborda R (2014) Gestão da Zona Costeira – O Desafio da Mudança. Relatório do Grupo de Trabalho do Litoral, p 237 (in Portuguese)

  • Stronkhorst J, Huisman B, Giardino A, Santinelli G, Santos F (2018) Sand nourishment strategies to mitigate coastal erosion and sea level rise at the coast of Holland (The Netherlands) and Aveiro (Portugal) in the 21st Century. Ocean Coast Manag J 156:266–276

    Article  Google Scholar 

  • Tondello M, Ruol P, Sclavo M, Capobianco M (1998) Model tests for evaluating beach nourishment performance. 26th International Conference on Coastal Engineering, Copenhagen, Denmark

  • Vasco Costa F, ASCE F, Veloso Gomes F, Silveira Ramos F, Vicente C (1996) History of Coastal Engineering in Portugal In History and Heritage of Coastal Engineering, ASCE–American Society of Civil Engineers, New York. ISBN: 0-7844-0196-9

  • Veloso-Gomes F, Taveira-Pinto F, Pais-Barbosa J (2004) Erosion risk at the NW Portuguese coast: the douro mouth–cape mondego stretch. J Coast Conserv

  • Veloso-Gomes F, Taveira-Pinto F, Neves L, Barbosa P (2006) Pilot site of river douro–cape mondego and case studies of Estela, Aveiro, Caparica, Vale do Lobo and Azores. Erosion–A European Initiative for Sustainable Coastal Erosion Management. ISBN: 972-752-074-x

Download references

Acknowledgements

This work was financially supported by the project “Integrated Coastal Climate Change Adaptation for Resilient Communities”, INCCA—POCI-01-0145-FEDER-030842, funded by FEDER, through “Programa Operacional Competividade e Internacionalização” in its ERDF component and by national funds (OE), through FCT/MCTES

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: supplementary maps

Appendix: supplementary maps

The figures below present the mapping of the different parameters used by CERA methodology in its different modules, namely

See Figs. 10 , 11 , 12 , 13 .

Fig. 10
figure 10figure 10

Mapping of the parameters used by susceptibility module. a Geomorphology. b Coastal defence structures

Fig. 11
figure 11figure 11

Mapping of the parameters used by exposure module. a Distance to shoreline. b Topography + storm surge

Fig. 12
figure 12figure 12figure 12

Mapping of the parameters used by value module. a Ecology. b Infrastructures. c Population

Fig. 13
figure 13figure 13

Mapping of the parameters used by coastal erosion module. a Shoreline change rates according to Lira et al. (2016). b Shoreline change rates classification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A.M., Coelho, C. & Narra, P. Coastal erosion risk assessment to discuss mitigation strategies: Barra-Vagueira, Portugal. Nat Hazards 105, 1069–1107 (2021). https://doi.org/10.1007/s11069-020-04349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04349-2

Keywords

Navigation