Skip to main content
Log in

Cause of scale inconsistencies in DORIS time series

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In this paper we analyze the scale of the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) solutions with respect to DORIS extension of the International Terrestrial Reference Frame (ITRF) for Precise Orbit Determination DPOD2014. The main goal is to explain the scale inconsistencies and to find the optimal solution reaching low-biased and consistent scale time series. Our analysis profits from 4 different strategies based only on the Geodetic Observatory Pecný analysis center solution, using DORIS exchange format data 2.2. A difference in the sequence of the solutions directly corresponds to one of the changes in the solution settings: data elevation dependent weighting, application of data validity indicators and application of phase center - reference point correction. We process multi-satellite and single-satellite solutions for the time period 2011.0–2017.0. Our analysis examines scale inconsistency issues in 2011/2012 and in 2015. The scale increment in 2011/2012 is explained as a result of the concurrence of changes in satellite constellation and change in the provider data validity standards for Cryosat-2 and Jason-2 satellites. The scale increment in 2015 is explained as the effect of change in the standards for phase center - reference center corrections for Saral, Jason-2 and Cryosat-2 satellites. Moreover, comparing the solutions with and without elevation dependent data downweighting using the same elevation cutoff (10°), we found a significant reduction of scale bias and scale variation applying the data downweighting. The data downweighting improved also the station positioning repeatability. We demonstrate that the solution, which is completely free from the additional data associated with observations in DORIS exchange format 2.2 and includes the data downweighting law, eventuates in a consistent scale time series with the lowest offset with respect to DPOD2014 (version 1.0) (12.7 ± 2.3 mm for 2011.0–2017.0). The only remaining scale issue is the part of 2011/2012 increment of around 5 mm, explained by a change in the DORIS satellite constellation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res.: Solid Earth. 121, 6109–6131.

    Article  Google Scholar 

  • Boehm J., Niell A., Tregoning P. and Schuh, H., 2006. Global Mapping Function (GMF): A new empirical mapping fiction based on numeric weather model data. Geophys. Res. Lett., 33, L07304, DOI: 10.1029/2005GL025546.

    Article  Google Scholar 

  • Capdeville H., Štepánek P., Hecker L. and Lemoine J.M., 2016. Update of the corrective model for Jason-1 DORIS data in relation to the South Atlantic Anomaly and a corrective model for SPOT-5. Adv. Space Res., 58, 2628–2650

    Article  Google Scholar 

  • Capdeville H., Moreaux G. and Lemoine, F.G., 2017. Characterization and Impact of DORIS scale variations. IDS CCIERS Unified Analysis Workshop, Paris 10–12 July 2017, https://idsdoris.org/images/documents/report/meetings/UAW2017-DorisScaleVariations-Capdeville.pdf.

    Google Scholar 

  • Cerri L., Berthias J.P., Bertiger W.I., Haines B.J., Lemoine F.G., Mercier F., Ries J.C., Willis P. and Ziebart M., 2010. Precision orbit determination standards for the Jason series of altimeter mission. Mar. Geod., 33, 379–418.

    Article  Google Scholar 

  • Cerri L., Lemoine J.M., Mercier F., Zelensky N.P. and Lemoine F.G., 2013. DORIS-based point mascons for the long term stability of precise orbit solutions. Adv. Space Res., 52, 466–476.

    Article  Google Scholar 

  • Dach R., Hugentobler U., Fridez P. and Meindl M.,2007. Bernese GPS Software, Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.

    Google Scholar 

  • Foerste C., Bruinsma S., Abrikosov O., Rudenko S., Lemoine J.M., Marty, J.C., Neumayer K.H. and Biancale R., 2016. EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, Potsdam, Germany, DOI: 10.5880/icgem.2016.008.

    Google Scholar 

  • Hedin A.E.,1987. MSIS-86 thermospheric model. J. Geophys. Res., 92(A5), 4649–4662.

    Google Scholar 

  • Knocke P.C., Ries J.C. and Tapley B.D, 1988. Earth radiation pressure effects on satellites. AIAA/AAS Astrodynamics Conference, Minneapolis, MN,Aug. 15–17, 1988, Technical Papers (A88-50352 21-13). American Institute of Aeronautics and Astronautics, Washington, DC,577–587.

    Google Scholar 

  • Kuzin S. and Tatevian S., 2016. DORIS data processing in the INASAN Analysis Center and the contribution to ITRF2014. Adv. Space Res., 58, 2561–2571.

    Article  Google Scholar 

  • Lemoine F.G., Chinn D.S., Zelensky N.P., Beall J.W. and Le Bail K., 2016. The development of the GSFCDORIS contribution to ITRF2014. Adv. Space Res., 58, 2520–2542.

    Article  Google Scholar 

  • Lemoine J.M., Capdeville H. and Soudarin L., 2016. Precise orbit determination and station position estimation using DORIS RINEX data. Adv. Space Res., 58, 2677–2690.

    Article  Google Scholar 

  • Letellier T., Lyard F. and Lefevre F., 2004. The New Global Tidal Solution: FES2004. Proceedings of the Ocean Surface Topography Science Team Meeting, St. Petersburg, FL,4–6.

    Google Scholar 

  • Mercier F., Cerri L. and Berthias J.P., 2010. Jason-2 DORIS phase measurement processing. Adv. Space Res., 45, 1441–1454.

    Article  Google Scholar 

  • Moreaux G., Lemoine F.G., Capdeville H., Kuzin S., Otten M., Štepánek P., Willis P. and Ferrage P., 2016. The international DORIS service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv. Space Res., 58, 2479–2504.

    Article  Google Scholar 

  • Moreaux G., Willis P., Lemoine F.G., Zelensky N., Couhert A., Lakbir H.A. and Ferrage P., 2016b. DPOD2014: a new DORIS extension of ITRF2014 for precise orbit determination. DORIS IDS Workshop, La Rochelle, 31 October - 1 November 2016, https://ids-doris.org/images/documents/report/ids_workshop_2016/IDS16_s2_Moreaux_DPOD2014.pdf.

    Google Scholar 

  • Moreaux G., 2017. Status of the combination center activities. IDS AWG Meeting, London 22–24 May 2017, https://ids-doris.org/images/documents/report/AWG201705/IDSAWG201705- Moreaux-CC_StatusReport.pdf.

    Google Scholar 

  • Otten M., Flohrer C., Springer T. and Dow J., 2010. DORIS processing at the European Space Observations Centre. Adv. Space Res., 46, 1606–1613.

    Article  Google Scholar 

  • Petit G. and Luzum B. (Eds.), 2010. IERS Conventions (2010). IERS Technical Note 36, IERS Convention Centre, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp., ISBN 3-89888-989-6.

    Google Scholar 

  • Soudarin L., Capdeville H. and Lemoine J.M., 2016. Activity of the CNES/CLS Analysis Center for the IDS contribution to ITRF2014. Adv. Space Res., 58, 2543–2560.

    Article  Google Scholar 

  • Standish E.M., 1998. JPL Planetary and Lunar Ephemerides. DE405/LE405, JPL IOM 312.F-98- 048.

    Google Scholar 

  • Štepánek P., Douša J., Filler V. and Hugentobler U., 2010. DORIS data analysis at Geodetic Observatory Pecny using single-satellite and multi-satellite geodetic solutions. Adv. Space Res., 46, 1578–1592.

    Article  Google Scholar 

  • Štepánek P., Filler V., Hugentobler U. and Douša J., 2010. DORIS at GOP, from pilot testing campaign to fully operational analysis center. Acta Geodyn. Geomater., 7, 49–60.

    Google Scholar 

  • Tourain C., Moreaux G., Auriol A. and Saunier J., 2016. DORIS starec ground antenna characterization and impact on positioning. Adv. Space Res., 58, 2707–2716.

    Article  Google Scholar 

  • Willis P., Fagard H., Ferrage P., Lemoine F.G., Noll C.E., Noomen R., Otten M., Ries J.C., Rothacher M., Soudarin L., Tavernier G. and Valette J.J., 2010. The International DORIS Service (IDS): toward maturity. Adv. Space Res., 45, 1408–1420.

    Article  Google Scholar 

  • Willis P., Gobinddass M.L., Garayt B. and Fagard H., 2012. Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. In: Kenyon S., Pacino M. and Marti U., (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia. 136, 43–49, Springer-Verlag, Berlin, Germany, DOI: 10.1007/978-3-642-20338-1_6.

    Article  Google Scholar 

  • Willis P., Zelensky N.P., Ries, J., Soudarin L., Cerri L., Moreaux G., Lemoine F.G., Otten M., Argus D.F. and Heflin M.B., 2016. DPOD2008, a DORIS-oriented terrestrial reference frame for precise orbit determination. In: Rizos C. and Willis P., (Eds), IAG 150 Years. International Association of Geodesy Symposia. 143, 175–181, Springer-Verlag, Berlin, Germany, DOI: 10.1007/1345_2015_125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Štěpánek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štěpánek, P., Filler, V. Cause of scale inconsistencies in DORIS time series. Stud Geophys Geod 62, 562–585 (2018). https://doi.org/10.1007/s11200-018-0406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0406-x

Keywords

Navigation