Skip to main content
Log in

Robustness of Msplit(q) estimation: A theoretical approach

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Msplit(q) estimation is a development of M-estimation which is based on the assumption that a functional model of observations can be split into q competitive ones. The main idea behind such an assumption is that the observation set might be a mixture of realizations of different random variables which differ from each other in location parameters that are estimated. The paper is focused on the robustness of Msplit(q) estimates against outlying observations. The paper presents derivatives of the general expressions of the respective influence functions and weight functions which are the main basis for theoretical analysis. To recognize the properties of Msplit(q) estimates in a better way, we propose considering robustness from two points of view, namely local and global ones. Such an approach is a new one, but it reflects the nature of the estimation method in question very well. Thus, we consider the local breakdown point (LBdP) and the global one (GBdP) that are both based on the maximum sensitivities of the estimates. LBdP describes the mutual relationship between the “neighboring” Msplit(q) estimates, whereas GBdP concerns the whole set of the estimates and describes the robustness of the method itself (in more traditional sense). The paper also presents GBdP with an extension, which shows how an outlier might influence Msplit(q) estimates. The general theory proposed in the paper is applied to investigate the squared Msplit(q) estimation, the variant which is used in some practical problems in geodesy, surveying, remote sensing or geostatistics, and which can also be applied in other geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei A.R., Alaei-Tabatabaei S.M., Zangeneh-Nejad F. and Voosoghi B., 2017. Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs. J. Surv. Eng., 143, 1–12 DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000195.

    Google Scholar 

  • Błaszczak-Bąk W., Janowski A., Kamiński W. and Rapiński J., 2015. Application of the Msplit method for filtering airborne laser scanning data-sets to estimate digital terrain models. Int. J. Remote Sens., 36, 2421–2437.

    Article  Google Scholar 

  • Campbell N.A., 1984. Mixture models and atypical values. Math. Geol., 16, 465–477.

    Article  Google Scholar 

  • Caspary W. and Haen W., 1990. Simultaneous estimation of location and scale parameters in the context of robust M-estimation. Manuscr. Geod., 15, 273–282.

    Google Scholar 

  • Cellmer S., 2014. Least fourth powers: optimisation method favouring outliers. Surv. Rev., 47, 411–117, DOI: https://doi.org/10.1179/1752270614Y.0000000142.

    Article  Google Scholar 

  • Chang X.W. and Guo Y., 2005. Huber’s M-estimation in relative GPS positioning: computational aspects. J. Geodesy, 79, 351–362.

    Article  Google Scholar 

  • Duchnowski R., 2011. Robustness of strategy for testing leveling mark stability based on rank test. Surv. Rev., 43, 687–699.

    Article  Google Scholar 

  • Duchnowski R., 2013. Hodges-Lehmann estimates in deformation analyses. J. Geodesy, 87, 873–884.

    Article  Google Scholar 

  • Duchnowski R. and Wiśniewski Z., 2011. Estimation of the shift between parameters of functional models of geodetic observations by applying Msplit estimation. J. Surv. Eng., 138, 1–8.

    Article  Google Scholar 

  • Duchnowski R. and Wiśniewski Z., 2014. Comparison of two unconventional methods of estimation applied to determine network point displacement. Surv. Rev., 46, 401–405.

    Article  Google Scholar 

  • Duchnowski R. and Wiśniewski Z., 2017a. Accuracy of the Hodges-Lehmann estimates computed by applying Monte Carlo simulations. Acta Geod. Geophys., 52, 511–525, DOI: https://doi.org/10.1007/s40328-016-0186-0.

    Article  Google Scholar 

  • Duchnowski R. and Wiśniewski Z., 2017b. Msplit and MP estimation. A wider range of robustness. In: Vaiskunaite R. and Cygas D. (Eds), 10th International Conference on Environmental Engineering. Vilnius Gediminas Technical University Publishing House “Technika”, Vilnius, Lithuania, DOI: https://doi.org/10.3846/enviro.2017.185(http://enviro.vgtu.lt/index.php/enviro2017/2017/paper/viewFile/9/370).

    Google Scholar 

  • Ge Y., Yuan Y. and Jia N., 2013. More efficient methods among commonly used robust estimation methods for GPS coordinate transformation. Surv. Rev., 45, 229–234.

    Article  Google Scholar 

  • Gui Q. and Zhang J., 1998. Robust biased estimation and its applications in geodetic adjustment. J. Geodesy, 72, 430–435.

    Article  Google Scholar 

  • Hampel F.R., 1974. The influence curve and its role in robust estimation. J. Am. Statist. Assoc., 69, 383–397.

    Article  Google Scholar 

  • Hampel F.R., Ronchetti E.M., Rousseuw P.J. and Stahel W.A., 1986. Robust Statistics. The Approach Based on Influence Functions. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Hekimoglu S. and Berber M., 2003. Effectiveness of robust methods in heterogeneous linear model. J. Geodesy, 76, 706–713.

    Article  Google Scholar 

  • Hekimoglu S. and Erenoglu R.C., 2013. A new GM-estimate with high breakdown point. Acta Geod. Geophys., 48, 419–137.

    Article  Google Scholar 

  • Huber P.J., 1964. Robust estimation of location parameter. Ann. Math. Statist., 43, 1041–1067.

    Article  Google Scholar 

  • Huber P.J., 1981. Robust Statistics. John Wiley & Sons, New York, NY.

    Book  Google Scholar 

  • Janicka J. and Rapinski J., 2013. Msplit transformation of coordinates. Surv. Rev., 45, 269–274.

    Article  Google Scholar 

  • Janowski A. and Rapinski J., 2013. Msplit estimation in laser scanning data modeling. J. Indian Soc. Remote Sens., 41, 15–19.

    Article  Google Scholar 

  • Jin Y., Tong X., Li L, Zhang S. and Liu S., 2015. Total least L1- and L2-norm estimations of a coordinate transformation model with a structured parameter matrix. Stud. Geophys. Geod., 59, 345–365.

    Article  Google Scholar 

  • Jones G.A. and Jones J.M., 2000. Information and Coding Theory. Springer Undergraduate Mathematics Series. Springer-Verlag, Berlin, Heidelberg, Germany.

    Book  Google Scholar 

  • Koch K.R., 1996. Robuste parameterschätzung. Allgemeine Vermessungsnachrichten, 103, 1–18.

    Google Scholar 

  • Koch K.R., 2017. Expectation Maximization algorithm and its minimal detectable outliers. Stud. Geophys. Geod., 61, 1–18.

    Article  Google Scholar 

  • Kubik K., 1982. An error theory for the Danish method. In: Proceedings of the Symposium of the ISPRS Commission III Helsinki, 1982. XXIV-3, 299–309.

    Google Scholar 

  • Krarup T. and Kubik K., 1983. The Danish method; experience and philosophy. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, München, Reihe A, Heft Nr 7, 131–134.

  • Lark R.M., 2008. Some results on the spatial breakdown point of robust point estimates of the variogram. Math. Geosci, 40, 729–751, DOI: https://doi.org/10.1007/s11004-008-9162-8.

    Article  Google Scholar 

  • Lehmann R., 2013. On the formulation of the alternative hypothesis for geodetic outlier detection. J. Geodesy, 87, 373–386.

    Article  Google Scholar 

  • Li J., Wang A. and Xinyuan W., 2013. Msplit estimate of the relationship between LS and its application in gross error detection. Mine Surveying, 2, 57–59, DOI: https://doi.org/10.3969/j.issn.1001-358X.2013.02.20 (in Chinese).

    Google Scholar 

  • Militino A.F., 1997. M-estimator of the drift coefficients in a spatial linear model. Math. Geol., 29, 221–229.

    Article  Google Scholar 

  • Wang B., Li J. and Liu C., 2016. A robust weighted total least squares algorithm and its geodetic applications. Stud. Geophys. Geod., 60, 177–194.

    Article  Google Scholar 

  • Wiśniewski Z., 1996. Estimation of the third and fourth order central moments of measurement errors from sums of powers of least squares adjustment residuals. J. Geodesy, 70, 256–262.

    Article  Google Scholar 

  • Wiśniewski Z., 2009. Estimation of parameters in a split functional model of geodetic observations (Msplit estimation). J. Geodesy, 83, 105–120.

    Article  Google Scholar 

  • Wiśniewski Z., 2010. Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations. J. Geodesy, 84, 355–372.

    Article  Google Scholar 

  • Wiśniewski Z., 2014. M-estimation with probabilistic models of geodetic observations. J. Geodesy, 88, 941–957.

    Article  Google Scholar 

  • Wiśniewski Z. and Zienkiewicz M.H., 2016. Shift-M*split estimation in deformation analyses. J. Surv. Eng., 142, 1–13.

    Google Scholar 

  • Xu P., 2005. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J. Geodesy, 79, 146–159.

    Article  Google Scholar 

  • Yang Y., 1992. Robustifying collocation. Manuscr. Geod., 17, 21–28.

    Google Scholar 

  • Yang Y., 1994. Robust estimation for dependent observations. Manuscr. Geod., 19, 10–17.

    Google Scholar 

  • Yang Y., 1997. Estimators of covariance matrix at robust estimation based on influence functions. Z. Vermessungswesen, 122, 166–174.

    Google Scholar 

  • Yang Y., 1999. Robust estimation of geodetic datum transformation. J. Geodesy, 73, 268–274.

    Article  Google Scholar 

  • Yang Y., Cheng M.K., Shum C.K. and Tapley B.D., 1999. Robust estimation of systematic errors of satellite laser range. J. Geodesy, 73, 345–349.

    Article  Google Scholar 

  • Yang Y., He H. and Xu G., 2001. Adaptively robust filtering for kinematic geodetic positioning. J. Geodesy, 75, 106–109.

    Article  Google Scholar 

  • Yang Y., Gao W. and Zhang X., 2010. Robust Kalman filtering with constraints: a case study for integrated navigation. J. Geodesy, 84, 373–381.

    Article  Google Scholar 

  • Zhang J. and Li G., 1998. Breakdown properties of location M-estimators. Ann. Statist., 26, 1170–1189.

    Article  Google Scholar 

  • Zhong D., 1997. Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. J. Geodesy,71, 552–561.

    Article  Google Scholar 

  • Zhuo D., 1987. Robust statistics and geochemical data analysis. Math. Geol., 19, 207–218.

    Article  Google Scholar 

  • Zienkiewicz M.H., 2015. Application of Msplit estimation to determine control points displacements in networks with unstable reference system. Surv. Rev., 47, 174–180.

    Article  Google Scholar 

  • Zienkiewicz M.H. and Baryła R., 2015. Determination of vertical indicators of ground deformation in the old and main city of Gdansk area by applying unconventional method of robust estimation. Acta Geodyn. Geomater., 12, No.3(179), 249–257.

    Google Scholar 

  • Zuo Y., 2006. Robust location and scatter estimators in multivariate analysis. In: Fan J. and Koul H.L. (Eds), Frontiers of Statistics, Part VII. Parametric Techniques and Inferences, 467–490. Imperial College, London, U.K., DOI: https://doi.org/10.1142/9781860948886_0021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Duchnowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchnowski, R., Wiśniewski, Z. Robustness of Msplit(q) estimation: A theoretical approach. Stud Geophys Geod 63, 390–417 (2019). https://doi.org/10.1007/s11200-018-0548-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0548-x

Keywords

Navigation