Skip to main content
Log in

An optimized method to transform the Cartesian to geodetic coordinates on a triaxial ellipsoid

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A general triaxial ellipsoid is suitable to represent the reference surface of the celestial bodies. The transformation from the Cartesian to geodetic coordinates on the triaxial ellipsoid becomes an important issue in geodesy. In the literature, the vector iterative method and the Newton’s iterative method for solving the nonlinear system of equations or an algebraic fraction equation is applied to compute the geodetic coordinates, but may lead to the non-convergence regions. In this work, the universal algorithm including the Newton’s iterative solutions of an algebraic sextic equation for the points outside the equatorial plane and the analytic solutions for the points inside the equatorial plane are used to compute the geodetic coordinates. The numerical experiments show the algorithm is fast, highly accurate and well convergent. The algorithm is valid at any point inside and outside the celestial bodies including the points near the celestial bodies’ center and in the singular elliptical disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel N.H. and Galois É., 1889. Abhandlungen über die algebraische Auflösung der Gleichungen. Springer, Berlin, Germany (in German).

    Book  Google Scholar 

  • Bell R.J.T., 1923. An Elementary Treatise on Coordinate Geometry of Three Dimensions. MacMillan, London, U.K.

    Google Scholar 

  • Borkowski K.M., 1987. Transformation of geocentric to geodetic coordinates without approximations. Astrophys. Space Sci., 139, 1–4.

    Article  Google Scholar 

  • Borkowski K.M., 1989. Accurate algorithms to transform geocentric to geodetic coordinates. Bull. Géod., 63, 50–56.

    Article  Google Scholar 

  • Bowring B.R., 1976. Transformation from spatial to geographical coordinates. Surv. Rev., 23, 323–327.

    Article  Google Scholar 

  • Burša M., Šima Z. and Pícha J., 1980. Tri-axiality of the Earth, the moon and mars. Stud. Geophys. Geod., 24, 211–217.

    Article  Google Scholar 

  • Eberly D., 2018. Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid (https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf).

  • Feltens J., 2008. Vector methods to compute azimuth, elevation, ellipsoidal normal, and the cartesian (X, Y, Z) to geodetic (φ, λ, h) transformation. J. Geodesy, 82, 493–504.

    Article  Google Scholar 

  • Feltens J., 2009 Vector method to compute the cartesian (X, Y, Z) to geodetic (φ, λ, h) transformation on a triaxial ellipsoid. J. Geodesy, 83, 129–137.

    Article  Google Scholar 

  • Fukushima T., 1999 Fast transform from geocentric to geodetic coordinates. J. Geodesy, 73, 603–610.

    Article  Google Scholar 

  • Fukushima T., 2006. Transformation from cartesian to geodetic coordinates accelerated by Halley’s method. J. Geodesy, 79, 689–693.

    Article  Google Scholar 

  • Gonzalez-Vega L. and Polo-Blanco I., 2009. A symbolic analysis of Vermeille and Borkowski polynomials for transforming 3D cartesian to geodetic coordinates. J. Geodesy, 83, 1071–1081.

    Article  Google Scholar 

  • Hedgley D.R., 1976. An Exact Transformation from Geocentric to Geodetic Coordinates for Nonzero Altitudes. NASA Technical Rreport R-458, NASA Dryden Flight Research Center, Edwards, CA.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. Freeman, San Francisco, CA.

    Google Scholar 

  • Horner W.G., 1819. A new method of solving numerical equations of all orders, by continuous approximation. Philos. Trans. Roy. Soc. London., 109, 308–335.

    Article  Google Scholar 

  • Jenkins M.A. and Traub J.F., 1970. A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math., 14, 252–263.

    Article  Google Scholar 

  • Jones G., 2002. New solutions for the geodetic coordinate transformation. J. Geodesy, 76, 437–446.

    Article  Google Scholar 

  • Laskowski P., 1991. Is Newton’s iteration faster than simple iteration for transformation between geocentric and geodetic coordinates? Bull. Géod., 65, 14–17.

    Article  Google Scholar 

  • Ligas M., 2012a. Cartesian to geodetic coordinates conversion on a triaxial ellipsoid. J. Geodesy, 86, 249–256.

    Article  Google Scholar 

  • Ligas M., 2012b. Two modified algorithms to transform cartesian to geodetic coordinates on a triaxial ellipsoid. Stud. Geophys. Geod., 56, 993–1006.

    Article  Google Scholar 

  • Lin K.C. and Wang J., 1995. Transformation from geocentric to geodetic coordinates using Newton’s iteration. Bull. Géod, 69, 300–303.

    Article  Google Scholar 

  • Müeller B., 1991. Kartenprojektionen des dreiachsigen Ellipsoids. MSc Thesis. University Stuttgart, Stuttgart, Germany (https://www.gis.unistuttgart.de/lehre/abschlussarbeiten/MSc/MULL_1991_a.pdf, in German).

    Google Scholar 

  • Pollard J., 2002. Iterative vector methods for computing geodetic latitude and height from rectangular coordinates. J. Geodesy, 76, 36–10.

    Article  Google Scholar 

  • Seidelmann P.K., Archinal B.A., A’Hearn M.F., Conrad A., Consolmagno G., Hestroffer D., Hilton J., Krasinsky G., Neumann G., Oberst J., Stooke P., Tedesco E.F., Tholen D.J., Thomas P.C. and Williams I.P., 2007. Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron., 98, 155–180.

    Article  Google Scholar 

  • Turner J.D., 2009. A non-iterative and non-singular perturbation solution for transforming cartesian to geodetic coordinates. J. Geodesy, 83, 139–145.

    Article  Google Scholar 

  • Vermeille H., 2002. Direct transformation from geocentric coordinates to geodetic coordinates. J. Geodesy, 76, 451–454.

    Article  Google Scholar 

  • Vermeille H., 2004. Computing geodetic coordinates from geocentric coordinates. J. Geodesy, 78, 94–95.

    Article  Google Scholar 

  • Vermeille H., 2011. An analytical method to transform geocentric into geodetic coordinates. J. Geodesy, 85, 105–117.

    Article  Google Scholar 

  • Zhang C., Hsu H., Wu X., Li S., Wang Q., Chai H. and Du L., 2005. An alternative algebraic algorithm to transform cartesian to geodetic coordinates. J. Geodesy, 79, 413–420.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 41631072 and 41774021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofeng Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bian, S. & Li, S. An optimized method to transform the Cartesian to geodetic coordinates on a triaxial ellipsoid. Stud Geophys Geod 63, 367–389 (2019). https://doi.org/10.1007/s11200-018-0589-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0589-1

Keywords

Navigation