Skip to main content
Log in

Transforming Vulnerability Indexing for Saltwater Intrusion into Risk Indexing through a Fuzzy Catastrophe Scheme

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Mapping vulnerability to Saltwater Intrusion (SWI) in coastal aquifers is studied in this paper using the GALDIT framework but with a novelty of transforming the concept of vulnerability indexing to risk indexing. GALDIT is the acronym of 6 data layers, which are put consensually together to invoke a sense of vulnerability to the intrusion of saltwater against aquifers with freshwater. It is a scoring system of prescribed rates to account for local variations; and prescribed weights to account for relative importance of each data layer but these suffer from subjectivity. Another novelty of the paper is to use fuzzy logic to learn rate values and catastrophe theory to learn weight values and these together are implemented as a scheme and hence Fuzzy-Catastrophe Scheme (FCS). The GALDIT data layers are divided into two groups of Passive Vulnerability Indices (PVI) and Active Vulnerability Indices (AVI), where their sum is Total Vulnerability Index (TVI) and equivalent to GALDIT. Two additional data layers (Pumping and Water table decline) are also introduced to serve as Risk Actuation Index (RAI). The product of TVI and RAI yields Risk Indices. The paper applies these new concepts to a study area, subject to groundwater decline and a possible saltwater intrusion problem. The results provide a proof-of-concept for PVI, AVI, RAI and RI by studying their correlation with groundwater quality samples using the fraction of saltwater (fsea), Groundwater Quality Indices (GQI) and Piper diagram. Significant correlations between the appropriate values are found and these provide a new insight for the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to Thank Dr. Barret Kurylyk for a review of the draft version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Daneshfaraz.

Ethics declarations

We ensure that the current paper incorporates the following statements:

• Disclosure of potential conflicts of interest.

• Research involving Human Participants and/or Animals.

• Informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghfam, S., Khatibi, R., Daneshfaraz, R. et al. Transforming Vulnerability Indexing for Saltwater Intrusion into Risk Indexing through a Fuzzy Catastrophe Scheme. Water Resour Manage 34, 175–194 (2020). https://doi.org/10.1007/s11269-019-02433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-019-02433-2

Keywords

Navigation