Skip to main content
Log in

Effect of Manure Compost on Distribution of Cu and Zn in Rhizosphere Soil and Heavy Metal Accumulation by Brassica juncea

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Manure compost has emerged as a method of soil amendment for phytoremediation of polluted soil by heavy metals. Pot experiments were carried out to study the effects of different dosages of manure compost (0, 20, 40, 60, 80 and 100 g/kg compost to soil) on the distribution of Cu and Zn in the rhizosphere soil and the accumulation of them by Brassica juncea during the phytoremediation process. The rhizosphere soil and plant tissues were sampled at 42 days after planting to determine the concentration of heavy metals in the samples by using flame atomic absorption spectroscopy. pH value, electrical conductivity, and nutrients (alkaline-N, olsen-P, and olsen-K) increased with the addition of compost. The percentages of exchangeable Cu and residual Cu decreased, while the proportion of other fractions increased with increasing amount of manure compost. The fractions of exchangeable Zn, Fe-Mn oxide-bound Zn, and residual Zn have the same variation tendency as Cu. The variation tendencies of exchangeable Zn, Fe-Mn oxide-bound Zn, and residual Zn are the same as that of Cu. Concentrations of Cu and Zn in the overground and underground parts of B. juncea had a significant increase up to a maximum at 60 g/kg compost and then decreased. Bioaccumulation coefficients reached maximum values of 1.44 and 1.35 in the overground and underground parts of B. juncea at 60 g/kg compost, respectively. The biomass of B. juncea and total metal accumulation in B. juncea increased to the maximum at 60 g/kg compost. Obtained results indicated that appropriate amount of soil amendment is very important aspects for phytoremediation of heavy metal-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achiba, W. B., Gabteni, N., Lakhdar, A., Laing, G. D., Verloo, M., Jedidi, N., et al. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Aagriculture Ecosystems & Environment, 130, 156–163.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders e strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environment Pollution, 159, 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., & Dawson, J. J. C. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186, 195–202.

    Article  CAS  Google Scholar 

  • Brokbartold, M., Wischermann, M., & Marschner, B. (2012). Plant availability and uptake of lead, zinc, and cadmium in soils contaminated with anti-corrosion paint from pylons in comparison to heavy metal contaminated urban soils. Water Air Soil Pollution, 223, 199–213.

    Article  CAS  Google Scholar 

  • Cao, C., Zhang, Q., Ma, Z. B., Wang, X. M., Chen, H., & Wang, J. J. (2018). Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma, 328, 1–9.

    Article  CAS  Google Scholar 

  • Chen, D., Liu, X. Y., Bian, R. J., Cheng, K., Zhang, X. H., Zheng, J. F., et al. (2018). Effects of biochar on availability and plant uptake of heavy metals-a metaanalysis. Journal of Environmental Management, 222, 76–85.

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, D. J., & Bernal, M. P. (2005). Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environment Pollution, 138, 46–58.

    Article  CAS  Google Scholar 

  • Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309–326.

    Article  Google Scholar 

  • Doni, S., Macci, C., Peruzzi, E., Iannelli, R., & Masciandaro, G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering, 81, 146–157.

    Article  Google Scholar 

  • Galdames, A., Mendoza, A., Orueta, M., García, I. S. D. S., Virto, I., & Vilas, J. L. (2017). Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resource-Efficient Technologies, 3, 166–176.

    Article  Google Scholar 

  • Garcia-Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37, 1960–1972.

    Article  CAS  Google Scholar 

  • Gondek, K., Mierzwa-Hersztek, M., & Kopeć, M. (2018). Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. Journal of Environmental Management, 210, 87–95.

    Article  CAS  Google Scholar 

  • Hattab, N., Motelica-Heino, M., Faure, O., & Bouchardon, J. L. (2015). Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. Journal of Environmental Management, 159, 37–47.

    Article  CAS  Google Scholar 

  • Huang, H. L., Luo, L., Zhang, J. C., & Jiang, J. L. (2014). Effect of compost on the distribution of copper in heavy metal contaminated soil. Advanced Materials Research, 1030-1032, 344–347.

    Article  CAS  Google Scholar 

  • Karami, N., Clemente, R., Moreno-Jimenez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of greenwaste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191, 41–48.

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.

    Article  CAS  Google Scholar 

  • Khan, A. H. A., Nawaz, I., Yousaf, S., Cheema, A. S., & Iqbal, M. (2019). Soil amendments enhanced the growth of Nicotiana alata L. and Petunia hydrida L. by stabilizing heavy metals from wastewater. Journal of Environmental Management, 242, 46–55.

    Article  CAS  Google Scholar 

  • Kopeć, M., Gondek, K., Mierzwa-Hersztek, M., & Antonkiewicz, J. (2018). Factors influencing chemical quality of composted poultry waste. Saudi Journal of Biological Sciences, 25, 1678–1686.

    Article  CAS  Google Scholar 

  • Kuźniar, A., Banach, A., Stępniewska, Z., Frąc, M., Oszust, K., Gryta, A., Kłos, M., & Wolińska, A. (2018). Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. International Agrophysics, 32, 101–109.

    Article  CAS  Google Scholar 

  • Lashari, M. S., Liu, Y. M., Li, L. Q., Pan, W. N., Fu, J. Y., Pan, G. X., et al. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113–118.

    Article  Google Scholar 

  • Liang, H., Wu, W. L., Zhang, Y. H., Zhou, S. J., & Long, C. Y. (2018a). Levels, temporal trend and health risk assessment of five heavy metals in fresh vegetables marketed in Guangdong Province of China during 2014-2017. Food Control, 92, 107–120.

    Article  CAS  Google Scholar 

  • Liang, B. W., Ma, C. Q., Fan, L. M., Wang, Y. Z., & Yuan, Y. B. (2018b). Soil amendment alters soil physicochemical properties and bacterial community structure of a replanted apple orchard. Microbiological Research, 216, 1–11.

    Article  CAS  Google Scholar 

  • Li, L. F., Ai, S. Y., Wang, Y. H., Tang, M. D., & Li, Y. C. (2016). In situ field-scale remediation of low Cd-contaminated paddy soil using soil amendments. Water Air Soil Pollution, 227, 342.

    Article  CAS  Google Scholar 

  • Lu, K. P., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292.

    Article  CAS  Google Scholar 

  • Mohamed, I., Zhang, G. S., Li, Z. G., Liu, Y., Chen, F., & Dai, K. (2015). Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67–76.

    Article  Google Scholar 

  • Mousavi, S. M., Motesharezadeh, B., Hosseini, H. M., Alikhani, H., & Zolfaghari, A. A. (2018). Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and Environmental Safety, 147, 206–216.

    Article  CAS  Google Scholar 

  • Narwal, R. P., & Singh, B. R. (1998). Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollution, 103, 405–421.

    Article  CAS  Google Scholar 

  • Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., & Patel, R. (2019). Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. Journal of Environmental Management, 232, 153–164.

    Article  CAS  Google Scholar 

  • O’Dell, R., Silk, W., Green, P., & Claassen, V. (2007). Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Environment Pollution, 148, 115–124.

    Article  CAS  Google Scholar 

  • Ogundiran, M. B., Mekwunyei, N. S., & Adejumo, S. A. (2018). Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. Journal of Environmental Chemical Engineering, 6, 2206–2213.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Kim, S. C., Kim, D. K., Skousen, J. G., Lee, J. S., Cheong, Y. W., et al. (2011). Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry & Health, 33, 23–30.

    Article  CAS  Google Scholar 

  • Pérez, D. V., Alcantra, S., & Ribeiro, C. C. (2007). Composted municipal waste effects on chemical properties of a Brazilian soil. Bioresource Technology, 98, 525–533.

    Article  CAS  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Ruiz-Fernández, J., Masaguer, A., & Moliner, A. (2013). Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus. Environmental and Experimental Botany, 88, 53–59.

    Article  CAS  Google Scholar 

  • Puga, A. P., Melo, L. C. A., Abreu, C. A., Coscione, A. R., & Paz-Ferreiro, J. (2016). Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research, 164, 25–33.

    Article  Google Scholar 

  • Radziemska, M., Bęś, A., Gusiatin, Z. M., Cerdà, A., Mazur, Z., Jeznach, J., et al. (2019). The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas. Science of the Total Environment, 688, 37–45.

    Article  CAS  Google Scholar 

  • Ranieri, E., & Gikas, P. (2014). Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollution, 225, 1981.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., & Kheir, A. M. S. (2018). Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere, 204, 514–522.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28, 1442–1447.

  • Sung, M. H., Lee, C. Y., & Lee, S. Z. (2011). Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. Journal of Hazardous Materials, 190, 744–754.

    Article  CAS  Google Scholar 

  • Tang, X., Li, Q., Wu, M., Lin, L., & Scholz, M. (2016). Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. Journal of Environmental Management, 181, 646–662.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tüzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74, 289–297.

    Article  CAS  Google Scholar 

  • Wang, H., Dong, Y. H., Yang, Y. Y., Gurpal, S. T., & Zhang, X. M. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences., 25, 2435–2442.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, C. B., & Jin, Z. X. (2009). The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei seemHems near a Pb/Zn smelter in Guangdong, PR China. Geoderma, 148, 299–306.

    Article  CAS  Google Scholar 

  • Wu, F. L., Lin, D. Y., & Su, D. C. (2011). The effect of planting oilseed rape and compost application on heavy metal forms in soil and Cd and Pb uptake in rice. Agricultural Sciences in China, 10, 267–274.

    Article  CAS  Google Scholar 

  • Xu, Q. Y., Gao, L., Peng, W. Q., Gao, B., Xu, D. Y., & Sun, K. (2018). Assessment of labile Zn in reservoir riparian soils using DGT, DIFS, and sequential extraction. Ecotoxicology and Environmental Safety, 160, 184–190.

    Article  CAS  Google Scholar 

  • Yang, G. H., Zhu, G. Y., Li, H. L., Han, X. M., Li, J. M., & Ma, Y. B. (2018). Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. Journal of Integrative Agriculture, 17, 1861–1870.

    Article  CAS  Google Scholar 

  • Yang, J., Wang, C., & Dai, H. (2008). Soil agrochemical analysis and environmental monitoring. Beijing: China Earth Press.

    Google Scholar 

  • Yang, Y., Li, H. L., Chen, Z. P., Liao, B. H., & Zeng, Q. R. (2015). Comparation of the uptake and accumulation of heavy metals by rape species grown in contaminated soil surrounding mining tails in Chenzhou, China. Journal of Agricultural Resources and Environment, 32, 370–376.

    CAS  Google Scholar 

  • Zhang, X. P., Zhong, Z. K., Bian, F. Y., & Yang, C. B. (2019). Effects of composted bamboo residue amendments on soil microbial communities in an intensively managed bamboo (Phyllostachys praecox) plantation. Applied Soil Ecology, 136, 178–183.

    Article  Google Scholar 

  • Zeng, Z. Z., Wang, X. L., Gou, J. F., Zhang, H. F., Wang, H. C., & Nan, Z. R. (2014). Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag. Waste Management Research, 32, 179–185.

    Article  CAS  Google Scholar 

  • Zhai, X. Q., Li, Z. W., Huang, B., Luo, N. L., & Zeng, G. M. (2018). Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment, 635, 92–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Research Fund of Hunan Provincial Education Department (17B119), Key Research and Development Program in Hunan Province (2018SK2022), the National Natural Science Foundation of China (51709103), Natural Science Foundation of Hunan Province, China (2018JJ3242), China Postdoctoral Science Foundation (2018M630901), and Hong Kong Scholars Program (XJ2018029).

Funding

This study was supported by Scientific Research Fund of Hunan Provincial Education Department (17B119), Key Research and Development Program in Hunan Province (2018SK2022), the National Natural Science Foundation of China (51709103), Natural Science Foundation of Hunan Province, China (2018JJ3242), China Postdoctoral Science Foundation (2018M630901), and Hong Kong Scholars Program (XJ2018029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoyu Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Luo, L., Huang, L. et al. Effect of Manure Compost on Distribution of Cu and Zn in Rhizosphere Soil and Heavy Metal Accumulation by Brassica juncea. Water Air Soil Pollut 231, 195 (2020). https://doi.org/10.1007/s11270-020-04572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04572-4

Keywords

Navigation