Skip to main content

Advertisement

Log in

Toxicity of arsenic in relation to soil properties: implications to regulatory purposes

  • SOILS, SEC 5 • SOIL AND LANDSCAPE ECOLOGY • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The present work evaluates the influence of different soil properties and constituents on As solubility in laboratory-contaminated soils, with the aim of assessing the toxicity of this element from the use of bioassays to evaluate the soil leachate toxicity and thereby propose soil guideline values for studies of environmental risk assessment in soil contamination.

Materials and methods

Seven soils with contrasting properties were artificially contaminated in laboratory with increasing concentrations of As. Samples were incubated for 4 weeks, and afterwards, soil solution (1:1) was obtained after shaking for 24 h. The soil leachate toxicity was assessed with two commonly used bioassays (seed germination test with Lactuca sativa and Microtox ® test with Vibrio fischeri).

Results and discussion

The relationship between soluble As and soil properties indicated that iron oxides and organic matter content were the variables most closely related to the reduction of the As solubility, while pH and CaCO3 increased As solubility in the soil solutions. Toxicity bioassays showed significant differences between soils depending on their properties, with a reduction of the toxicity in the iron-rich soil (no observed effect concentration (NOEC) = 150 mg kg−1) and a significant increase in the highly carbonate samples (NOEC between 15 and 25 mg kg−1).

Conclusions

Soil guideline values for regulatory purposes usually set a single value for large areas (regions or countries) which can produce over- or underestimation of efforts in soil remediation actions. These values should consider different levels according to the main soil properties controlling arsenic mobility and the soil leachate toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risk of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Aguilar J, Dorronsoro C, Galán E, Gómez JL (1999) Criterios y estándares para declarar un suelo como contaminado en Andalucía, In: Univ. Sevilla (ed) Investigación y Desarrollo Medioambiental en Andalucía, Sevilla, pp 45–59

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, London

    Book  Google Scholar 

  • ASTM (American Society for Testing and Materials) (2004) Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium. ASTM, West Conshohocken, PA, D5660-5696

  • Bagur González MG, Estepa Molina C, Martín Peinado FJ, Morales Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289

    Article  CAS  Google Scholar 

  • Barth H, L’Hermite P (1987) Scientific basis for soil protection in the European community (eds). Commission of the European Communities, Brussels, Belgium. Elsevier Applied Science, London

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480

    Article  CAS  Google Scholar 

  • Bhattacharya P, Ewlch AH, Stollenwerk KG, McMauglin MJ, Brundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part I. Occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31(2):9–18

    Article  CAS  Google Scholar 

  • Bohn HI, Brian ML, O’Connor GA (2001) Soil chemistry. Wiley, New York

    Google Scholar 

  • Bolan NS, Duraisamy VP (2003) Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust J Soil Res 41(3):533–555

    Article  CAS  Google Scholar 

  • Bowell RJ (1994) Sorption of arsenic by iron oxides and hydroxides in soils. Appl Geochem 9:279–286

    Article  CAS  Google Scholar 

  • BWRHABTGG (1995) Besluit van de Vlaamse Regering Houdende Achtergrondwaarden. Bodernsaneringsnomen en Toepassingen van Gereinigde Grond. Ministry of Environment and Employment Brussels, Belgium

    Google Scholar 

  • Cao Q, Hu Q-H, Baisch C, Khan S, Zhu Y-G (2009) Arsenate toxicity for wheat and lettuce in six Chinese soils with different properties. Environ Toxicol Chem 28(9):1946–1950

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2001) Canadian Environmental Quality Guidelines. CCME, Winnipeg

    Google Scholar 

  • Crommentuijn T, Sijm D, de Bruijn J, Van den Hoop M, Van Leeuwen K, Van de Plassche E (2000) Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J Environ Manag 60:121–143

    Article  Google Scholar 

  • DEFRA (Department for Environment, Food and Rural Affairs) (2002) Soil guideline values for arsenic contamination. Environment Agency, UK

    Google Scholar 

  • Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Peleka E (2003) Removal of arsenic and cadmium by alaganeite fixed beds. Sep Sci Technol 38(16):3967–3981

    Article  CAS  Google Scholar 

  • Díez M, Simón M, Dorronsoro C, García I, Martín F (2007) Background arsenic concentrations in Southeastern Spanish soils. Sci Total Environ 378:5–12

    Article  CAS  Google Scholar 

  • Díez M, Simón M, Martín F, Dorronsoro C, García I, Van Gestel CAM (2009) Ambient trace element background concentrations in soils and their use in risk assessment. Sci Total Environ 407:4622–4632

    Article  CAS  Google Scholar 

  • Dobran S, Zagury GJ (2006) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364:239–250

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1989) Short- and long-term effect of heavy metals on phosphatase activity in soils: an ecological dose–response model approach. Biol Fertil Soils 8:235–241

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling-hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Environmental A (1998) The Microtox® acute basic, DIN, ISO and wet test procedure. Azur, Carlsbad

    Google Scholar 

  • Estepa C (2011) Evaluación preliminar de la toxicidad en suelos de Rodalquilar (Almería). University of Granada, Spain

    Google Scholar 

  • Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22(5):299–310

    Article  CAS  Google Scholar 

  • Fendorf S, La Force MJ, Li G (2004) Heavy metals in the environment. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. J Environ Qual 33:2049–2055

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil/rhizosphere/plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Fulladosa E, Murat JC, Martínez M, Villaescusa I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46(2):176–182

    CAS  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ Pollut 131:495–504

    Article  CAS  Google Scholar 

  • Holmgren GGS (1967) A rapid citrate-dithionite extractable iron procedure. Sci Soc Am Proc 31:210–211

    Article  CAS  Google Scholar 

  • Isnard P, Flammarion P, Roman G, Babut M, Bastien PH, Bintein S, Esserméant L, Férard JF, Gallotti-Schmitt S, Saouter E, Saroli M, Thiébaud H, Tomassone R, Vindimian E (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–669

    Article  CAS  Google Scholar 

  • IUSS (International Union of Soil Sciences) (2006a) World reference base for soil resources Report No. 103. World Soil Resources. FAO, Rome

  • IUSS (International Union of Soil Sciences) (2006b) World reference base for soil resource, 2nd edn. IUSS, ISRIC, FAO, Roma

  • Juhasz AL, Naidu R, Zhu YG, Wang LS, Jiang JY, Cao ZH (2003) Toxicity issues associated with geogenic arsenic in the groundwater–soil–plant–human continuum. Bull Environ Contam Toxicol 71:1100–1107

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Klitzke S, Lang F (2009) Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil. Effects of pH increase and counterion valency. J Environ Qual 38:933–939

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage 28:215–225

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001) Modelling zinc toxicity for terrestrial invertebrates. Environ Toxicol Chem 9:1901–1908

    Article  Google Scholar 

  • Lors C, Ponge JF, Martínez Aldaya M, Damidot D (2011) Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils. Environ Pollut 159:2974–2981

    Article  CAS  Google Scholar 

  • Macías F, Calvo de Anta R (2009) Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Xunta de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible, Galicia

  • MAPA (Ministerio de Agricultura, Pesca y Alimentación) (1994) Métodos Oficiales de Análisis. Tomo III. Secretaría General Técnica del Ministerio de Agricultura, Pesca y Alimentación (MAPA), Madrid

    Google Scholar 

  • Martín Peinado FJ, Romero Freire A, Arco Lázaro E, Sierra Aragón M, Ortiz Bernad I, Abbaslou H (2012) Assessment of arsenic toxicity in spiked soils and water solutions by the use of bioassays. Span J Soil Sci 2(3):45–56

    Google Scholar 

  • Martín F, Escoto M, Fernández J, Fernández E, Arco E, Sierra M, Dorronsoro C (2010) Toxicity assessment of sediments with natural anomalous concentrations in heavy metals by the use of bioassay. Int J Chem Eng. doi:10.1155/2010/101390

    Google Scholar 

  • Martín F, Simón M, Arco E, Romero A, Dorronsoro C (2011) Arsenic behaviour in polluted soils after remediation activities. In: Hernandez-Soriano MC (ed) Soil health and land use management. InTech, Rijeka, pp 201–216

    Google Scholar 

  • Martínez-Sánchez MJ, Martínez-López S, García-Lorenzo ML, Martínez-Martínez LB, Pérez-Sirvent C (2011) Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma 160:535–541

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification, and sequestration, and consequences to food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Miretzky P, Fernández A (2010) Remediation of arsenic-contaminated soils by iron amendments: a review. Crit Rev Env Sci Tech 40(2):93–115

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859

    Article  CAS  Google Scholar 

  • Nielsen SS, Petersen L, Kjeldsen P, Jakobsen R (2011) Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere 84:383–389

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an introduction. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment: biogeochemical. Interactions, health effects and remediation. Trace metals and other contaminants in the environment vol. 9 (Series Editor Nriagu, JO). Elsevier, Amsterdam, pp 1–58

    Google Scholar 

  • O’Neill P (1995) Arsenic. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie Academic and Profesional, Glasgow, pp 105–121

    Chapter  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) (2003) OECD Guideline for the testing of chemicals. Proposal for updating guideline 208. Terrestrial Plant Test: 208: Seedling Emergence and Seedling Growth Test

  • Petänen T, Lyytikäinen M, Lappalainen J, Romantschuk M, Kukkonen JVK (2003) Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods. Environ Pollut 122:407–415

    Article  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36(13):2889–2896

    Article  CAS  Google Scholar 

  • Ribó JM, Kaiser KL (1987) Photobacterium phosphoretum toxicity bioassay. Test procedures and applications. Toxic Assess 2:305–323

    Google Scholar 

  • RIVM (National Institute for Public Health and Environmental Protection) (2000) Annex A: target values, soil remediation intervention values and indicative levels for serious contamination, Dutch target and intervention values, (the New Dutch List), Netherlands

  • Romero-Freire A (2012) Influencia de las propiedades del suelo en la movilidad y toxicidad del arsénico. Propuesta de valores de referencia para la evaluación de la contaminación. University of Granada, Spain

    Google Scholar 

  • Rooney CP, Zhao FJ, McGRath SP (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25:726–732

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB, Webb SB (eds) Mineral in environments. Soil Science Society of America, Madison, pp 148–180

    Google Scholar 

  • Sheppard SC, Evenden WG (1988) The assumption of linearity in soil and plant concentration ratios: an experimental evaluation. J Environ Radioactivity 7:221–247

    Article  CAS  Google Scholar 

  • Simón M, Martín F, García I, Bouza P, Dorronsoro C, Aguilar J (2005) Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environ Pollut 135(1):65–72

    Article  CAS  Google Scholar 

  • Simón M, Diez M, González V, García I, Martín F, de Haro S (2010) Use of liming in the remediation of soils polluted by sulphide oxidation: a leaching-column study. J Hazard Mater 180:241–246

    Article  CAS  Google Scholar 

  • Smolders E, McGrath SP, Lombi E, Karman CC, Bernhard R, Cools D, Van den Brande K, Van Os B, Walrave N (2003) Comparison of toxicity of zinc for soil microbial processes between laboratory-contaminated and polluted field soils. Environ Toxicol Chem 22:2592–2598

    Article  CAS  Google Scholar 

  • Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ Toxicol Chem 23:2633–2640

    Article  CAS  Google Scholar 

  • Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28(8):1633–1642

    Article  CAS  Google Scholar 

  • Song J, Zhao FJ, McGrath SP, Luo YM (2006) Influence of soil properties and aging on arsenic phytotoxicity. Environ Toxicol Chem 25:1663–1670

    Article  CAS  Google Scholar 

  • Tang X-Y, Zhu Y-G, Cui Y-S, Cuan J, Tang L (2006) The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ Int 32(5):682–689

    Article  Google Scholar 

  • Teaf CM, Covert DJ, Teaf PA, Page E, Starks MJ (2010) Arsenic cleanup criteria for soils in the US and abroad: comparing guidelines and understanding inconsistencies. Proc Annual Int Conf on Soils Sediments Water and Energy 15, Article 10

  • Torres M (2003) Empleo de los ensayos con plantas en el control de contaminantes tóxicos ambientales. Rev Cubana Hig Epidemiol 41:2–3

    Google Scholar 

  • US EPA (US Environmental Protection Agency) (1996) Ecological effects test guidelines. Seed germination/root elongation toxicity test. OPPTS 850.4200

  • Vaughan GT, Greenslade PM (1998) Sensitive bioassays for risk assessment of contaminated soils. Final report CET/IR 55. Commonwealth Scientific and Industrial Research Organisation, Sydney

    Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721

    Article  CAS  Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJM, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33

    Article  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932

    Article  CAS  Google Scholar 

  • Yang JK, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequestration and bioaccessibility of As(V) in soils. Environ Sci Technol 36(21):4562–4569

    Article  CAS  Google Scholar 

  • Yang X, Hou Q, Yang Z, Zhang X, Hou Y (2012) Solid-solution partitioning of arsenic (As) in the paddy soil profiles in Chengdu Plain, Southwest China. Geosci Front. doi:10.1016/j.gsf.2012.03.006

    Google Scholar 

Download references

Acknowledgments

Authors thank the financial support of this work to the Project CGL 2010-19902 and Grant FPI-MICINN BES-2011-045101. Also thanks to Mr. David Nesbitt for the English corrections and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Martín-Peinado.

Additional information

Responsible editor: Winfried Schroeder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-Freire, A., Sierra-Aragón, M., Ortiz-Bernad, I. et al. Toxicity of arsenic in relation to soil properties: implications to regulatory purposes. J Soils Sediments 14, 968–979 (2014). https://doi.org/10.1007/s11368-014-0845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0845-0

Keywords

Navigation