Skip to main content
Log in

Isolation and characterisation of recalcitrant organic components from an estuarine sediment core

  • SEDIMENTS, SEC 2 • PHYSICAL AND BIOGEOCHEMICAL PROCESSES • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research was to isolate humic substances and humin from an estuarine sediment core using a novel sequential extraction procedure to characterise the isolates, to determine their compositions and to understand how the organic matter (OM) changes with time.

Materials and methods

The sediments were exhaustively extracted using the following media: 0.1 M NaOH; 0.1 M NaOH + 6 M urea; and dimethylsulphoxide (DMSO) + H2SO4 (94:6 v/v). Pyrolysis gas chromatography mass spectroscopy (pyGC/MS), and nuclear magnetic resonance (NMR) spectroscopy were the analytical tools that gave the most significant data for the characterisation of the organic isolates.

Results and discussion

The results indicate subtle molecular compositional differences in relation to the alkaline and alkaline-urea isolates. The humic acids (HAs) and fulvic acids (FAs) are readily solvated in aqueous alkaline media compared to the aqueous insoluble hydrophobic humin (HU) components. In addition to aliphatic hydrocarbons, peptide materials make considerable contributions to the component structures of the isolates. Aryl and O-aryl C units characteristic of lignin, and of cutan structures from plants, indicate contributions from terrestrial OM to the organic components in the HU, especially from the base of the core. The evidence suggests that components of terrestrial plant materials and of microbial biomass are preferentially preserved with time and make the major contributions to the OM retained over long time scales. The data acquired provide detailed information about the origins, compositions, nature and the associations of the OM in the estuarine sediment core. Such information provides a greater understanding of the role of these organic components in the carbon (C) sink.

Conclusions

Humic acids and FAs are mineralised with time whereas HU is highly recalcitrant and represents a long-term sink for organic C. Humin is a separate organic entity and does not conform to the definitions of a humic substance. Terrestrial OM is preserved over long time scales in the environment. Protein makes significant contributions to all the organic isolates and its preservation suggests encapsulation in hydrophobic domains, or interactions with clay minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiken GR (1985) Isolation and concentration techniques for aquatic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Wiley, New York, pp 363–385

    Google Scholar 

  • Allison LE (1965) Organic carbon. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE, Dinauer RC (eds) Method of soil analysis: part 2, chemical and microbiological properties, American Society of Agronomy, Madison, WI, pp 1367–1378

  • Balaria A, Johnson CE (2013) Compositional characterization of soil organic matter and hot-water-extractable organic matter in organic horizons using a molecular mixing model. J Soils Sediments 13:1032–1042

    Article  CAS  Google Scholar 

  • Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3:175–185

    Article  CAS  Google Scholar 

  • Boussafir M, Gelin F, Lallier-Vergés E, Derenne S, Bertrand P, Largeau C (1995) Electron microscopy and pyrolysis of kerogens from the kimmeridge clay formation, UK: source organisms, preservation processes, and origin of microcycles. Geochim Cosmochim Acta 59:3731–3747

    Article  CAS  Google Scholar 

  • Brassell SC, Lewis CA, de Leeuw JW, de Lange F, Sinninghe Damste JS (1986) Isoprenoid thiophenes: novel products of sediment diagenesis. Nature 320:160–162

    Article  CAS  Google Scholar 

  • Byrne CMP, Hayes MHB, Humar R, Novotny EH, Lanigan G, Richards KG, Fay D, Simpson AJ (2010) Compositional changes in the hydrophobic acids fraction of drainage water from different land management practices. Water Res 44:4379–4390

    Article  CAS  Google Scholar 

  • Carr AS, Boom A, Chase BM, Roberts DL, Roberts ZE (2010) Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern cape coastline of South Africa. J Paleolimnol 44:947–961

    Article  Google Scholar 

  • Chang RR, Mylotte R, Hayes MHB, Mclnerney R, Tzou YM (2014) A comparison of the compositional differences between humic fractions isolated by the IHSS and exhaustive extraction procedures. Naturwissenschaften 101:197–209

  • Chikaraishi Y, Naraoka H (2003) Compound-specific δD–δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371

    Article  CAS  Google Scholar 

  • Dalton C, Mylotte R, Hayes MHB, McCarron S, Edwards R, Turner J (2010) Using coastal paleoenvironmental records to examine past climate variation and track anthropogenic influences. INFOMAR Project Report (Project # INF-09-19-DAL) pp. 47

  • Deshmukh AP, Chefetz B, Hatcher PG (2001) Characterization of organic matter in pristine and contaminated coastal marine sediments using solid-state 13C NMR, pyrolytic and thermochemolytic methods: a case study in the San Diego harbour area. Chemosphere 45:1007–1022

    Article  CAS  Google Scholar 

  • Deshmukh AP, Simpson AJ, Hadad CM, Hatcher PG (2005) Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org Geochem 36:1072–1085

    Article  CAS  Google Scholar 

  • Edwards RJ, Brooks AJ (2008) The island of Ireland: Drowning the myth of an Irish landbridge? In: Davenport JJ, Sleeman DP, Woodman PC (eds) Mind the Gap: Postglacial Colonisation of Ireland. Special Supplement to The Irish Naturalists’ Journal. pp 19–34

  • Forte C, Piazzi A, Pizzanelli S, Certini G (2006) CP MAS 13C spectral editing and relative quantitation of a soil sample. Solid State Nucl Magn Reson 30:81–88

    Article  CAS  Google Scholar 

  • Gardiner MJ, Radford T (1980) Ireland: general soil map, 2nd edn. An Foras Talúntais, Dublin, Ireland

    Google Scholar 

  • Goddijn LM, White M (2006) Digital camera measurements of water quality parameters in Galway Bay, Ireland, Estuar. Coast Shelf Sci 66(3-4):429–436

  • Hatcher P, Breger I, Maciel G, Szeverenyi N (1985) Geochemistry of humin. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York, pp 275-302

  • Hayes MHB, Swift RS (1978) The chemistry of soil organic colloids. In: Greenland DJ, Hayes MHB (eds) The Chemistry of Soil Constituents. Wiley, Chichester, pp 179–320

  • Hayes MHB (1985) Extraction of humic substances from soil. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in Soil, Sediment and Water. John Wiley & Sons, New York, pp 329–362

  • Hayes MHB (2006) Solvent systems for the isolation of organic components from soils. Soil Sci Soc Am J 70:986–994

    Article  CAS  Google Scholar 

  • Hayes TM, Hayes MHB, Skjemstad JO, Swift RS (2008) Studies of compositional relationships between organic matter in a grassland soil and its drainage waters. Eur J Soil Sci 59:603–616

    Article  CAS  Google Scholar 

  • Hayes TM, Hayes MHB, Swift RS (2012) Organic matter components in extracts and in drainage waters from a soil under long-term cultivation. Org Geochem 52:13–21

    Article  CAS  Google Scholar 

  • He M, Shi Y, Lin C (2008) Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. J Environ Sci 20:1294–1299

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Article  CAS  Google Scholar 

  • Henrichs PM, Tribone J, Massa DJ, Hewitt JM (1988) Blend miscibility of bisphenol a polycarbonate and poly(ethylene terephthalate) as studied by solid-state high-resolution 13C NMR spectroscopy. Macromolecules 21:1282–1291

    Article  CAS  Google Scholar 

  • Kaal J, Baldock JA, Buurman P, Nierop KGJ, Pontevedra-Pombol X, Martinez-Cortízas AM (2007) Evaluating pyrolysis-GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Org Geochem 38:1097–1111

    Article  CAS  Google Scholar 

  • Kaal J, Martínez Cortizas A, Buurman P, Criado Boado F (2008a) 8000 year of black carbon accumulation in a colluvial soil from NW Spain. Quat Res 69:56–61

    Article  Google Scholar 

  • Kaal J, Brodowski S, Baldock JA, Nierop KGJ, Martínez Cortizas A (2008b) Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Org Geochem 39:1415–1426

    Article  CAS  Google Scholar 

  • Keil RG, Hedges JI (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  CAS  Google Scholar 

  • Kuramoto T, Minagawa M (2001) Stable carbon and nitrogen isotopic characterization of organic matter in a mangrove ecosystem on the southwestern coast of Thailand. J Oceanogr 57:421–431

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Kadouri A, Metzger P (1984) Formation of a Botryococcus-derived kerogens. Comparative study of immature Torbanite and the extent alga Botryococcus braunii. In: Shenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in Organic Geochemistry (1983), Pergamon Press, Oxford, pp 327–332

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Bio Biochem 32:779–792

    Article  CAS  Google Scholar 

  • Lu XQ, Hanna JV, Johnson WD (2000) Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Appl Geochem 15:1019–1033

    Article  CAS  Google Scholar 

  • Malcolm RL, MacCarthy P (1992) Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water. Environ Int 18:597–607

    Article  CAS  Google Scholar 

  • McKinney DE, Bortiatynski JM, Carson DM, Clifford DJ, De Leeuw JW, Hatcher PG (1996) Tetramethylammonium hydroxide (TMAH) thermochemolysis of the aliphatic biopolymer cutan: insights into the chemical structure. Org Geochem 24:641–650

    Article  CAS  Google Scholar 

  • Nissenbaum A, Kaplan IR (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17:570–582

    Article  CAS  Google Scholar 

  • Page DW, van Leeuwen JA, Sparks KM, Mulcahy DE (2002) Pyrolysis characterisation of plant, humus and soil extracts from Australian catchments. J Anal Appl Pyrolysis 65:269–285

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Rashid MA (1985) Geochemistry of marine humic compounds. Springer, New York

    Book  Google Scholar 

  • Rice JA (2001) Humin. Soil Sci 166:848–857

    Article  CAS  Google Scholar 

  • Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry. Org Geochem 40:678–691

    Article  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Simpson AJ, McNally DJ, Simpson MJ (2011) NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectros 58:97–175

    Article  CAS  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  CAS  Google Scholar 

  • Sinninghe-Damste JS, Eglinton TI, de Leeuw JW, Schenck PA (1989) Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogens, asphaltenes and coals as revealed by flash pyrolysis. Geochim Cosmochim Acta 53:873–889

    Article  CAS  Google Scholar 

  • Smernik RJ, Baldock JA (2005) Does solid-state 15N NMR spectroscopy detect all soil organic nitrogen? Biogeochemistry 75:507–529

    Article  Google Scholar 

  • Song G, Hayes MHB, Novotny EH, Simpson AJ (2011) Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid. Naturwissenschaften 98:7–13

    Article  CAS  Google Scholar 

  • Song G, Novotny EH, Simpson AJ, Clapp CE, Hayes MHB (2008) Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur J Soil Sci 59:505–516

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) humus chemistry: genesis, composition, reactions. 2nd edn., Wiley, New York, USA

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltan-pour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis: part 3 chemical methods, SSSA series no. 5. Soil Science Society of America, Madison, WI, pp 1018–1020

  • Tang YC, Stauffer M (1995) Formation of pristene, pristane and phytane: kinetic study by laboratory pyrolysis of Monterey source rock. Org Geochem 23:451–460

    Article  CAS  Google Scholar 

  • Tegelaar EW, De Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3106

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Springer, Dordrecht

    Book  Google Scholar 

  • Tobi D, Elber R, Thirumalai D (2003) The dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study. Biopolymers 68:359–369

    Article  CAS  Google Scholar 

  • Übner M, Treuman M, Viitak A, Lopp M (2004) Properties of humic substances from the Baltic Sea and Lake Ermistu mud. J Soils Sediments 4:24–29

    Article  Google Scholar 

  • Vanderbrouke M, Pelet R, Debyser Y (1985) Geochemistry of humic substances in marine environments. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Wiley, New York, pp 249–273

    Google Scholar 

  • Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58:461–466

    Article  CAS  Google Scholar 

  • Xie X-Q, Ranade SV, DiBenedetto AT (1999) A solid state NMR study of polycarbonate oligomer grafted onto the surface of amorphous silica. Polymer 40:6297–6303

    Article  CAS  Google Scholar 

  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170

    Article  CAS  Google Scholar 

Download references

Thanks to Programme for Research in Third-Level Institutions (PRTLI) IV who funded this research and EUOSSIC Erasmus Mundus for funding the study period at Monash University. Thanks to the Marine Institute Ireland and Geological Survey Ireland for the collection of samples. Thanks to the International Humic Substances Society (IHSS) for a training bursary, and thanks to Prof. Andre Simpson who facilitated the acquisition of 2D NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. B. Hayes.

Additional information

Responsible editor: Jan Schwarzbauer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mylotte, R., Verheyen, V., Reynolds, A. et al. Isolation and characterisation of recalcitrant organic components from an estuarine sediment core. J Soils Sediments 15, 211–224 (2015). https://doi.org/10.1007/s11368-014-0970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0970-9

Keywords

Navigation