Skip to main content

Advertisement

Log in

The veterinary antibiotic journey: comparing the behaviour of sulfadiazine, sulfamethazine, sulfamethoxazole and tetracycline in cow excrement and two soils

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

To conceptualize the journey that veterinary antibiotics (VAs) follow between the animal stall and the field, two experiments were conducted. (1) The VAs sulfadiazine, sulfamethazine, sulfamethoxazole and tetracycline were mixed into cow excrement; prepared with three dry solid content variations. (2) Cow excrement containing the same VAs was mixed into sandy and clayey saturated soils. The aim was to quantify the solid-liquid partitioning and time-dependent behaviour of VAs at each stage of the journey, to enable mathematical replication of the process in the future.

Materials and methods

In each case, the mixtures were partitioned into their solid and liquid phases and the VA concentration in each was determined using liquid chromatography tandem mass spectrometry. Sorption isotherms (K d values) and elimination constants (k s: solid form, k l: liquid form) were calculated after various incubation periods.

Results and discussion

Sulfamethoxazole exhibits fast elimination in excrement; environmental contamination is unlikely. Sulfadiazine and sulfamethazine behave similarly in excrement and soils; tetracycline is more sorptive. Small percentages of the sulfadiazine, sulfamethazine and tetracycline masses initially found in excrement may subsequently be transported to environmental compartments in liquid form. However, the majority of these VAs are speculated to accumulate in soil or be transported to surface water systems via soil erosion.

Conclusions

The VA journey has been mathematically conceptualized for the first time and is supported by sorption isotherms and eliminations constants for four commonly detected VAs. Critical findings for sulfadiazine, sulfamethazine and tetracycline are (1) the majority of an initial VA mass resides in excrement liquid; (2) following incorporation into soil, the majority of the same initial VA mass resides in soil solid; (3) VAs found in soil liquid are assumed to be eliminated within a few months; (4) VAs found in soil solid are assumed to persist and accumulate; and (5) VAs are most likely to be transported to surface water systems in solid form (via soil erosion). Due to its rapid elimination in excrement, sulfamethoxazole that stems from veterinary medicine is not assumed to be a major environmental contaminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aristilde L, Marichal C, Miéhé-Brendlé J, Lanson B, Charlet L (2010) Interactions of oxytetracycline with a smectite clay: a spectroscopic study with molecular simulations. Environ Sci Technol 44:7839–7845

    Article  CAS  Google Scholar 

  • Aristilde L, Lanson B, Miéhé-Brendlé J, Marichal C, Charlet L (2016) Enhanced interlayer trapping of a tetracycline antibiotic within montmorillonite layers in the presence of Ca and Mg. J Colloid Interface Sci 464:153–159

    Article  CAS  Google Scholar 

  • Bailey C, Spielmeyer A, Frings RM, Hamscher G, Schüttrumpf H (2015) From agricultural fields to surface water systems: the overland transport of veterinary antibiotics. J Soils Sediments 15:1630–1634

    Article  CAS  Google Scholar 

  • Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M, Thiele-Bruhn S, Welp G (2010) Gefährdung der Bodenfunktionen. In: Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg, pp 449–519

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Boxall ABA, Fogg LA, Blackwell PA, Blackwell P, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. In: Reviews of Environmental Contamination and Toxicology, Reviews of Environmental Contamination and Toxicology. Springer, New York, pp 1–91

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297

    Article  CAS  Google Scholar 

  • Carrasquillo AJ, Bruland GL, MacKay AA, Vasudevan D (2008) Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: influence of compound structure. Environ Sci Technol 42:7634–7642

    Article  CAS  Google Scholar 

  • Chatterjee J, Rai N, Sar SK (2014) Kinetic isotherm of amoxicillin antibiotic through adsorption and its removal by electrocoagulation. Orient J Chem 30:775–784

    Article  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    Article  CAS  Google Scholar 

  • Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250

    Article  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    Article  CAS  Google Scholar 

  • Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  • Gao J, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39:9509–9516

    Article  CAS  Google Scholar 

  • Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485

    CAS  Google Scholar 

  • Gong W, Liu X, He H, Wang L, Dai G (2012) Quantitatively modeling soil–water distribution coefficients of three antibiotics using soil physicochemical properties. Chemosphere 89:825–831

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  • Höper H, Kues J, Nau H, Hamscher G (2002) Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Böden. Bodenschutz 4:141–148

    Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998

    Article  CAS  Google Scholar 

  • Ingerslev F, Toräng L, Loke M-L, Halling-Sørensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872

    Article  CAS  Google Scholar 

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues—friend or foe of soil fertility? Soil Biol Biochem 84:1–14

    Article  CAS  Google Scholar 

  • Jacobsen AM, Halling-Sørensen B (2006) Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 384:1164–1174

    Article  CAS  Google Scholar 

  • Jagnow G (1977) Mikrobieller Abbau der Futtermittelantibiotika Zink-Bacitracin, Flavophospholipol, Spiramycin und von Tetracyclin in feucht gelagertem und in mit Boden vermischtem Hühnerkot. Landwirtsch Forsch 1:227–234

    Google Scholar 

  • Jekel M, Dott W, Bergmann A, Dünnbier U, Gnirß R, Haist-Gulde B, Hamscher G, Letzel M, Licha T, Lyko S, Miehe U, Sacher F, Scheurer M, Schmidt CK, Reemtsma T, Ruhl AS (2015) Selection of organic process and source indicator substances for the anthropogenically influenced water cycle. Chemosphere 125:155–167

    Article  CAS  Google Scholar 

  • Kaprac IG, Koike S, Meyer MT, Snow DD, Chou SFJ, Mackie RI, Roy WR, Chee-Sandford JC (2005) Long-term monitoring of the occurrence of antibiotic residues and antibiotic resistance in groundwater near swine confinement facilities. (Report on the CSREES Project 2001-35102-10774.), USA

  • Karcı A, Balcıoğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664

    Article  Google Scholar 

  • Kemper N, Färber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in northern Germany. Agric Water Manag 95:1288–1292

    Article  Google Scholar 

  • Kim S-C, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong E, Meyer MT, Thurman E, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Langhammer J-P, Büning-Pfaue H (1989) Bewertung von Arzneimittel-Rückständen aus der Gülle im Boden. Leb Gerichtl Chem 43:103–113

    Google Scholar 

  • Langhammer J-P, Führ F, Büning-Pfaue H (1990) Verbleib von Sulfonamid-Rückständen aus der Gülle in Boden und Nutzpflanze. Lebensmittelchemie 44:93

    Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in north China. Chemosphere 89:1307–1315

    Article  CAS  Google Scholar 

  • Loke M-L, Tjørnelund J, Halling-Sørensen B (2002) Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere 48:351–361

    Article  CAS  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579

    Article  Google Scholar 

  • Mohring SAI, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol 43:2569–2574

    Article  CAS  Google Scholar 

  • Peng F-J, Zhou L-J, Ying G-G, Liu Y-S, Zhao J-L (2014) Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin. Environ Toxicol Chem 33:776–783

    Article  CAS  Google Scholar 

  • Pérez S, Eichhorn P, Aga DS (2004) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24:1361–1367

    Article  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  Google Scholar 

  • Rosendahl I, Siemens J, Groeneweg J, Linzbach E, Laabs V, Herrmann C, Vereecken H, Amelung W (2011) Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ Sci Technol 45:5216–5222

    Article  CAS  Google Scholar 

  • Rumsey TS, Miller RW, Dinius DA (1977) Residue content of beef feedlot manure after feeding diethylstilbestrol, chlortetracycline and ronnel and the use of stirofos to reduce population of fly larvae in feedlot manure. Arch Environ Contam Toxicol 6:203–212

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Spielmeyer A, Ahlborn J, Hamscher G (2014) Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 406:2513–2524

    Article  CAS  Google Scholar 

  • Spielmeyer A, Breier B, Groißmeier K, Hamscher G (2015) Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresour Technol 193:307–314

    Article  CAS  Google Scholar 

  • Sukul P, Lamshöft M, Zühlke S, Spiteller M (2008) Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 73:1344–1350

    Article  CAS  Google Scholar 

  • Thiele S (2000) Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. J Plant Nutr Soil Sci 163:589–594.

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167. doi:10.1002/jpln.200390023

  • Thiele S, Seibicke T, Leinweber P (2002) Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. J Environ Qual 33:1331–1342

    Article  Google Scholar 

  • Thiele-Bruhn S, Seibicke T, Schulten H-R, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Tolls J, Gebbink W, Cavallo R (2002) pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC Europe 12th Annual Meeting

  • van Gool S (1993) Possible effects on the environment of antibiotic residues in animal manure. Tijdschr Diergeneeskd 118:8–10

    Google Scholar 

  • Wang J, Hu J, Zhang S (2010) Studies on the sorption of tetracycline onto clays and marine sediment from seawater. J Colloid Interface Sci 349:578–582

    Article  CAS  Google Scholar 

  • Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production. J Soils Sediments 1:66–70

    Article  CAS  Google Scholar 

  • Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2003) Verhalten von Tetracyclinen und anderen Veterinärantibiotika in Wirtschaftsdünger und Boden. UFOPLAN 200:73–248, Berlin

  • Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF), within the RiskWa-funded project RiskAGuA, grant 02WRS1274A/B. Many thanks go to Heinrich Höper from the State Authority for Mining, Energy and Geology (LBEG), Hannover, Germany, for providing analyte-free lysimeter water; to Thomas Pütz from the Jülich Research Centre, Germany, for providing an analysis of both soils that were used; to Henner Hollert and his staff from the Institute for Environmental Research, RWTH Aachen University, for use of laboratory equipment; and to Franziska Ribbe (IWW), Sarah Nelsen, Darja Reich and Mark Richert for their practical assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Bailey.

Additional information

Responsible editor: Xilong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, C., Spielmeyer, A., Hamscher, G. et al. The veterinary antibiotic journey: comparing the behaviour of sulfadiazine, sulfamethazine, sulfamethoxazole and tetracycline in cow excrement and two soils. J Soils Sediments 16, 1690–1704 (2016). https://doi.org/10.1007/s11368-016-1370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1370-0

Keywords

Navigation