Skip to main content
Log in

Amendment of sulfate with Se into soils further reduces methylmercury accumulation in rice

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Both selenium (Se) and sulfate could largely affect methylmercury (MeHg) dynamics and phytoavailability in soil-rice systems, while their combined effects are less understood. Here, we aimed at exploring the potential effects of sulfate on MeHg accumulation in rice in the presence of Se.

Materials and methods

Rice was cultivated in inorganic Hg-spiked soils amended with Se only (selenite/selenate, “Se treatments”) or Se and sulfate (“Se + Sulfate treatments”). Soil parameters (e.g., pH and redox potential (Eh)), MeHg concentrations in soils, as well as MeHg or Se accumulation in rice plants were quantified during the rice growth period.

Results and discussion

Soil MeHg concentrations were generally comparable between Se + Sulfate and Se treatments. However, MeHg uptake by rice plants in Se + Sulfate treatments was 9–31 % lower than those in Se treatments, possibly due to the increased soil pH and formation of iron sulfides, which may reduce MeHg phytoavailability under sulfate amendment. Furthermore, sulfate input enhanced Se accumulation in root (especially in the presence of selenate), which could be responsible for the increased MeHg distribution in root and thus lower MeHg distribution in grain. Consequently, the reduced plant uptake of MeHg together with the decreased MeHg distribution in grain resulted in decline of grain MeHg concentrations in Se + Sulfate treatments (8–31 % lower compared to Se treatments).

Conclusions

Our results suggest that sulfate input with Se could further reduce MeHg accumulation in rice, which improved mechanistic understanding of MeHg behaviors in soil-rice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33(6):951–957

    Article  CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34(4):369–403

    Article  CAS  Google Scholar 

  • Du GH, Zhang GL, Gong ZT (2007) Placement of paddy soils of the Yangtze Delta in the Chinese Soil Taxonomy. Soils 39(5):684–691 (in Chinese with English abstract)

    Google Scholar 

  • Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158:409–415

    Article  CAS  Google Scholar 

  • Feng XB, Li P, Qiu GL, Wang SF, Li GH, Shang LH, Meng B et al (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol 42(1):326–332

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in fresh-water sediments. Environ Sci Technol 26(11):2281–2287

    Article  CAS  Google Scholar 

  • Han S, Narasingarao P, Obraztsova A, Gieskes J, Hartmann AC, Tebo BM, Allen EE (2010) Mercury speciation in marine sediments under sulfate-limited conditions. Environ Sci Technol 44(10):3752–3757

    Article  CAS  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R et al (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ 304:231–256

    Article  CAS  Google Scholar 

  • Hu ZY, Xu CK, Zhao YY, Wang TJ, Zhang HC, Cao ZH (2002) Dynamics of atmospheric sulphur deposition on rapeseed/rice rotation in selected area of south China. China Environ Sci 22(1):11–15 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Huang B, Wang M, Yan LX, Sun WX, Zhao YC, Shi XZ, Weindorf DC (2011) Accumulation, transfer, and environmental risk of soil mercury in a rapidly industrializing region of the Yangtze River Delta, China. J Soils Sediments 11:607–618

    Article  CAS  Google Scholar 

  • Huang QQ, Wang Q, Lou Z, Yu Y, Jiang RF, Li HF (2015) Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa). Plant Soil 388(1):255–266

    Article  CAS  Google Scholar 

  • Jia Y, Bao P, Zhu YG (2015) Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. J Soils Sediments 15:1960–1967

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Westlund PO, Shchukarev A, Lundberg E, Björn E (2012) Mercury methylation rates for geochemically relevant HgII species in sediments. Environ Sci Technol 46(21):11653–11659

    Article  CAS  Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32(2):199–205

    Article  CAS  Google Scholar 

  • Li YF, Zhao JT, Li YY, Li HJ, Zhang JF, Li B, Gao YX et al (2015) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China. Plant Soil 391(1):195–205

    Article  CAS  Google Scholar 

  • Liang L, Horvat M, Feng XB, Shang LH, Li H, Pang P (2004) Re-evaluation of distillation and comparison with HNO3 leaching/solvent extraction for isolation of methylmercury compounds from sediment/soil samples. Appl Organomet Chem 18(6):264–270

    Article  CAS  Google Scholar 

  • Liu CQ, Cao SQ, Chen GA, Wu XJ (1990) Sulphur in the agriculture of China. Acta Pedol Sinica 27(4):398–404 (in Chinese with English abstract)

    Google Scholar 

  • Ma L, Zhong H, Wu YG (2015) Effects of metal-soil contact time on the extraction of mercury from soils. Bull Environ Contam Toxicol 94:399–406

    Article  CAS  Google Scholar 

  • McNear DH Jr, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4(3):267–276

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Mikkelsen DS, Abshahi A (1989) Effects of soil flooding on selenium transformations and accumulation by rice. Soil Sci Soc Am J 53:122–127

    Article  CAS  Google Scholar 

  • Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea—implications for Se-Hg antagonism. J Anal At Spectrom 21(4):404–412

    Article  CAS  Google Scholar 

  • Okkenhaug G, Zhu YG, He JW, Li X, Lou L, Mulder J (2012) Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol 46(6):3155–3162

    Article  CAS  Google Scholar 

  • Rickard D, Luther GW III (2007) Chemistry of iron sulfides. Chem Rev 107:514–562

    Article  CAS  Google Scholar 

  • Rothenberg SE, Feng XB (2012) Mercury cycling in a flooded rice paddy. J Geophys Res 117:G03003,1–16

    Article  Google Scholar 

  • Schmidt H, Eickhorst T, Tippkötter R (2011) Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant Soil 341(1):221–232

    Article  CAS  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res 113(G00C03):1–14

    Google Scholar 

  • Skyllberg U, Drott A (2010) Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)—an EXAFS study. Environ Sci Technol 44(4):1254–1259

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86(3):373–389

    Article  CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Review: environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 5:401–432

    Article  Google Scholar 

  • Truong HYT, Chen YW, Saleh M, Nehzati S, George GN, Pickering IJ, Belzile N (2014) Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics 6:465–475

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    Article  CAS  Google Scholar 

  • Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye ZH (2014a) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278

    Article  CAS  Google Scholar 

  • Wang X, Ye ZH, Li B, Huang LN, Meng M, Shi JB, Jiang GB (2014b) Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environ Sci Technol 48(3):1878–1185

    Article  CAS  Google Scholar 

  • Wang YJ, Dang F, Zhon H, Wei ZB, Li P (2015) Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Environ Sci Pollut Res 23(5):4602–4608

    Article  Google Scholar 

  • Wang YJ, Dang F, Evans RD, Zhong H, Zhao JT, Zhou DM (2016a) Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil. Sci Rep 6:19477,1–11

    Google Scholar 

  • Wang YJ, Dang F, Zhao JT, Zhong H (2016b) Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environ Pollut 213:232–239

    Article  CAS  Google Scholar 

  • Weber FA, Voegelin A, Kretzschmar R (2009) Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 73(19):5513–5527

    Article  CAS  Google Scholar 

  • Wei QF (1981) In: Institute of Soil Science, Academia Sinica (ed) Proceedings of Symposium on Paddy Soils. Science Press, Beijing, pp 439–443

    Google Scholar 

  • Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium, mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92

    Article  CAS  Google Scholar 

  • Zhang JF, Qu LY, Feng XB, Zhang W, Guo YN, Lin K, Li M (2008) Farmland mercury contamination in the vicinity of an organic chemical factory in Guizhou, China. Chin J Geochem 27:424–430

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Larssen T, Qiu GL, Vogt RD (2010a) In inland China, rice, rather than fish is the major pathway for methylmercury exposure. Environ Health Perspect 118(9):1183–1188

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Larssen T, Shang LH, Li P (2010b) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44(12):4499–4504

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Zhu JM, Sapkota A, Meng B, Yao H, Qin HB et al (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46(18):10040–10046

    CAS  Google Scholar 

  • Zhao JT, Li YF, Li YY, Gao YX, Li B, Hu Y, Zhao YL et al (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.) in correlation with mercury species and exposure level. Metallomics 6(10):1951–1957

    Article  CAS  Google Scholar 

  • Zhou XB, Shi WM, Zhang LH (2007) Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture. Plant Soil 290(1):17–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided to Huan Zhong by the National Natural Science Foundation of China (41273087). We are grateful for the valuable comments from anonymous reviewers on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhong.

Additional information

Responsible editor: Jean-Paul Schwitzguébel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary data. Concentrations of MeHg in soils during rice cultivation, recovery rates of the certified reference materials, biomass of rice tissues, concentrations and mass distributions of Se in rice tissues. (DOC 1.46 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wei, Z., Zeng, Q. et al. Amendment of sulfate with Se into soils further reduces methylmercury accumulation in rice. J Soils Sediments 16, 2720–2727 (2016). https://doi.org/10.1007/s11368-016-1453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1453-y

Keywords

Navigation