Skip to main content

Advertisement

Log in

Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany)

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soils of tidal marshes play an important role in regional carbon (C) cycles as they are able to store considerable amounts of organic carbon (OC). However, the C dynamics of marsh soils of the Elbe estuary have not been investigated so far. Therefore, the aim of this study was to identify the sources and distribution of soil organic carbon (SOC) and the factors influencing the SOC pools of tidal marshes of the study region.

Materials and methods

In this study, SOC pools were determined in different salinity zones and elevation classes of the estuarine marshes. The amount of initial allochthonous OC was derived from the OC content in fresh sediments. The difference to the recent OC content in the soils was interpreted as autochthonous accumulation or mineralization by microorganisms.

Results and discussion

Young, low marshes of the study sites seem to be predominantly influenced by allochthonous OC deposition whereas the older, high marshes show autochthonous OC accumulation in the topsoils (0–30 cm) and mineralization in the subsoils (30–70 cm). SOC pools of the whole profile depth (0–100 cm) did not significantly differ between elevation classes, but decreased significantly with increasing salinity from 28.3 kg m−2 in the most upstream site of the oligohaline zone to 9.7 kg m−2 in the most downstream site of the polyhaline zone. Even though the areal extent of the investigated salinity zones was similar, the SOC mass within 100 cm soil depth decreased from 0.62 Tg (1 Tg = 1012 g) in the oligohaline zone to 0.18 Tg in the polyhaline zone.

Conclusions

Elevation was found to be one factor influencing the SOC pools of tidal marshes. However, salinity seems to be an even stronger influencing factor reducing the above-ground biomass and, accordingly, the autochthonous OC input as well as the allochthonous input by enhanced mineralization of OC along the course of the estuary. An upstream shift of the salinity zones by sea level rise could, therefore, lead to a reduction of the SOC storage of the estuarine marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262

    Article  CAS  Google Scholar 

  • Boden A-h-AG (2005) In: Verlagsbuchhandlung E S's, Hannover (eds) Bodenkundliche Kartieranleitung, 5 edn, Germany

  • Amann T, Weiss A, Hartmann J (2012) Carbon dynamics in the freshwater part of the Elbe estuary, Germany: implications of improving water quality. Estuar Coast Shelf Sci 107:112–121

    Article  CAS  Google Scholar 

  • Batjes NJ (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Beaumont NJ, Jones L, Garbutt A, Hansom JD, Toberman M (2014) The value of carbon sequestration and storage in coastal habitats. Estuar Coast Shelf Sci 137:32–40

    Article  Google Scholar 

  • Bergemann M (2005) Berechnung des Salzgehaltes der Elbe (Report). Wassergütestelle Elbe, Hamburg, Germany

  • Blum LK (1993) Spartina alterniflora root dynamics in a Virginia marsh. Mar Ecol Prog Ser 102:169–178

    Article  Google Scholar 

  • Bouchard V, Lefeuvre J-C (2000) Primary production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquat Bot 67:23–42

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Burden A, Garbutt RA, Evans CD, Jones DL, Cooper DM (2013) Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuar Coast Shelf Sci 120:12–20

    Article  CAS  Google Scholar 

  • Butzeck C, Eschenbach A, Gröngröft A, Hansen K, Nolte S, Jensen K (2015) Sediment deposition and accretion rates in tidal marshes are highly variable along estuarine salinity and flooding gradients. Estuar Coasts 38:434–450. doi:10.1007/s12237-014-9848-8

    Article  CAS  Google Scholar 

  • Callaway JC, DeLaune RD, Patrick WH Jr (1996) Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limnol Oceanogr 41:444–450

  • Chenu C, Plante AF (2006) Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the‘primary organo-mineral complex’. Eur J Soil Sci 57:596–607

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17:1111. doi:10.1029/2002GB001917

    Article  Google Scholar 

  • Craft C (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol Oceanogr 52:1220–1230

    Article  CAS  Google Scholar 

  • Dijkema KS (1990) Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea: their vegetation and management. Biol Conserv 51:191–209

    Article  Google Scholar 

  • DWD (2013) Deutscher Wetterdienst. http://www.dwd.de. Accessed 27.03.2013

  • Elsey-Quirk T, Seliskar DM, Sommersfield CK, Gallagher JL (2011) Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications. Wetlands 31:87–99

    Article  Google Scholar 

  • Ember LM, Williams DF, Morris JT (1987) Processes that influence carbon isotope variations in salt marsh sediments. Mar Ecol Prog Ser 36:33–42

    Article  Google Scholar 

  • Engels JG, Jensen K (2009) Patterns of wetland plant diversity along estuarine stress gradients of the Elbe (Germany) and Connecticut (USA) rivers. Plant Ecology & Diversity 2:301–311

    Article  Google Scholar 

  • Eswaran H, Van den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • FAO (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports 103. Rome, Italy

  • Grabemann H-J, Grabemann I, Müller A (2005) Die Auswirkungen eines Klimawandels auf Hydrografie und Gewässergüte der Unterweser. In: Schuchardt B, Schirmer M (eds) Klimawandel und Küste. Die Zukunft der Unterweserregion. Springer-Verlag, Berlin and Heidelberg, Germany, pp. 59–77

    Chapter  Google Scholar 

  • Gröngröft A, Grabowsky K, Schwank S (2006) Anpassung der Fahrrinne der Unter- und Außenelbe an die Containerschifffahrt. Planfeststellungsunterlage nach Bundeswasserstraßengesetzt, Umweltverträglichkeitsuntersuchung, Teilgutachten zum Schutzgut Wasser, Teilbereich Sedimente (Schadstoffgehalte und -freisetzung) (Report). Projektbüro Fahrrinnenanpassung von Unter- und Außenelbe für Wasser- und Schiffahrtsverwaltung des Bundes, Wasser- und Schiffahrtsamt Hamburg; Freie und Hansestadt Hamburg, Hamburg Port Authority, Hamburg, Germany

  • Gröngröft A, Jähnig U, Miehlich G, Lüschow R, Maass V, Stachel B (1998) Distribution of metals in sediments of the Elbe estuary in 1994. Water Sci Technol 37:109–116

    Article  Google Scholar 

  • Hansen K (2015) Ecosystem functions of tidal marsh soils of the Elbe estuary. Dissertation, Universität Hamburg

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Article  CAS  Google Scholar 

  • Hemminga MA, Buth GJC (1991) Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92:73–83

    Google Scholar 

  • Hulisz P, Gonet SS, Giani L, Markiewicz M (2013) Chronosequential alterations in soil organic matter during initial development of coastal salt marsh soils at the southern North Sea. Z Geomorphol 57:515–529

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Report). Intergovernmental Panel on Climate Change, Cambridge, UK and New York, USA

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kögel-Knabner I et al. (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  • Loomis MJ, Craft CB (2010) Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Sci Soc Am J 74:1028–1036. doi:10.2136/sssaj2009.0171

    Article  CAS  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Lubberts RK, van de Plassche O (1997) Organic carbon isotope systematics of coastal marshes. Estuar Coast Shelf Sci 45:681–687

    Article  CAS  Google Scholar 

  • Miehlich G, Kiene A, Gröngröft A, Neuschmidt O, Franke S, Graack G (1997) Umweltverträglichkeitsuntersuchung zur Anpassung der Fahrrinne der Unter- und Außenelbe an die Containerschiffahrt; Marterialband V; Fachgutachten Schutzgut Boden (Report). Planungsgruppe Ökologie + Umwelt Nord für Wasser- und Schiffahrtsverwaltung des Bundes, Wasser- und Schiffahrtsamt Hamburg; Freie und Hansestadt Hamburg, Amt Strom- und Hafenbau, Hamburg, Germany

  • Mitsch WJ, Gosselink JG (1993) Wetlands. 2nd edn. Van Nostrand Reinhold, New York, USA

  • Neubauer SC (2008) Contribution of mineral and organic components to tidal freshwater marsh accretion. Estuar Coast Shelf Sci 78:78–88

    Article  Google Scholar 

  • Nyman JA, Walters RJ, DeLaune RD, Patrick WH Jr (2006) Marsh vertical accretion via vegetative growth. Estuar Coast Shelf Sci 69:370–380

  • Odum EP (2000) Tidal marshes as outwelling/pulsing systems. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp. 3–7

    Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Article  Google Scholar 

  • Olsen YS, Dausse A, Garbutt A, Ford H, Thomas DN, Jones DL (2011) Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biol Biochem 43:531–541

    Article  CAS  Google Scholar 

  • Pfeiffer E-M (1998) Methanfreisetzung aus hydromorphen Böden verschiedener naturnaher und genutzter Feuchtgebiete (Marsch, Moor, Tundra, Reisanbau). Hamburger Bodenkundliche Arbeiten vol 37. Hamburger Bodenkundliche Arbeiten. Hamburg, Germany

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Reed DJ (2002) Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology 48:233–243

    Article  Google Scholar 

  • Saintilan N, Rogers K, Mazumder D, Woodroffe C (2013) Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar Coast Shelf Sci 128:84–92

    Article  CAS  Google Scholar 

  • Salomons W, Mook WG (1981) Field observations of the isotopic composition of particulate organic carbon in the southern North Sea and adjacent estuaries. Mar Geol 41:M11–M20

    Article  CAS  Google Scholar 

  • Schoer JH (1990) Determination of the origin of suspended matter and sediments in the Elbe estuary using natural tracers. Estuaries 13:161–172

    Article  CAS  Google Scholar 

  • Sindowski K-H (1979) Zwischen Jadebusen und Unterelbe. Sammlung Geologischer Führer vol 66. Gebrüder Borntraeger, Berlin and Stuttgart, Germany

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Spohn M, Babka B, Giani L (2013) Changes in soil organic matter quality during sea-influenced marsh soil development at the North Sea coast. Catena 107:110–117

    Article  CAS  Google Scholar 

  • Spohn M, Giani L (2012) Carbohydrates, carbon and nitrogen in soils of a marine and a brackish marsh as influenced by inundation frequency. Estuar Coast Shelf Sci 107:89–96

    Article  CAS  Google Scholar 

  • Stiller G (2009) Untersuchungen zur Ermittlung von Ursachen für die Variabilität von Makrophytenbeständen im Bearbeitungsgebiet der Tideelbe (Report). Hamburg, Germany

  • Streif H (2004) Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quat Int 112:3–28

    Article  Google Scholar 

  • Sutton-Grier AE, Keller JK, Koch R, Gilmour C, Megonigal JP (2011) Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes. Soil Biol Biochem 43:1576–1583

    Article  CAS  Google Scholar 

  • Tobias C, Neubauer SC (2009) Salt marsh biogeochemistry—an overview. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier B.V, Amsterdam, pp. 445–492

    Google Scholar 

  • Valéry L, Bouchard V, Lefeuvre J-C (2004) Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 24:268–276

    Article  Google Scholar 

  • Valiela I, Cole ML, McClelland J, Hauxwell J, Cebrian J, Joye SB (2000) Role of salt marshes as part of coastal landscapes. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp. 23–38

    Google Scholar 

  • Von Lützow M et al. (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124

    Article  Google Scholar 

  • Więski K, Guo H, Craft CB, Pennings SC (2010) Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuar Coasts 33:161–169

    Article  Google Scholar 

  • Windham L (2001) Comparison of biomass production and decomposition between Phragmites Australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA. Wetlands 21:179–188

    Article  Google Scholar 

  • WSD-Nord (2013) Wasser- und Schifffahrtsdirektion Nord. http://www.portal-tideelbe.de. Accessed 13.06.2013

Download references

Acknowledgments

The authors would like to thank Schleswig-Holstein’s Government-Owned Company for Coastal Protection, National Parks and Ocean Protection, and the nature protection authorities of the administrative districts Pinneberg and Stade for research permissions. Further thanks are due to Fabian Beermann, Maren Reese, Angela Meier, Birgit Schwinge, Alena Lucht, and to all other students and colleagues involved in field and laboratory work. This study was financially supported by the Estuary and Wetland Research Graduate School Hamburg (ESTRADE) as member of the State Excellence Initiative (LEXI) funded by the Hamburg Science and Research Foundation. Christian Butzeck appreciates funding by the Federal Ministry for Education and Research within the research project KLIMZUG-NORD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hansen.

Additional information

Responsible editor: Zucong Cai

Electronic supplementary material

ESM 1

(PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, K., Butzeck, C., Eschenbach, A. et al. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). J Soils Sediments 17, 47–60 (2017). https://doi.org/10.1007/s11368-016-1500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1500-8

Keywords

Navigation