Skip to main content
Log in

Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the East Pacific Rise near 13°N: An SEM-EDS study

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks, creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater. The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station (103°57.62″W, 12°50.55′N, water depth 2480 m) on the East Pacific Rise (EPR) near 13°N were analyzed using a scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDS). The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids. In addition, our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration. The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts. If the degree of hydrothermal fluid-solid phase interaction is relatively minor, Si, Al, Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass. If the degree of hydrothermal fluid-solid phase interaction is relatively strong, Si, Al, Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass. Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass, we estimate that the content of Si, Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%, 17.59% and 109%, respectively. Similarly, the Si, Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%, 16.30% and 37.83%, respectively, during the interaction of hydrothermal fluids and seafloor pillow basalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J C, Laverne C, Muehlenbachs K. 1985. Alteration of the upper oceanic crust: Mineralogy and processes in DSDP hole 504B, leg83. Int Repts DSDP, 83: 217–248

    Google Scholar 

  • Alt J C, Honnorez J, Laverne C, et al. 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. J Geophys Res, 91: 10309–10335

    Article  Google Scholar 

  • Alt J C, Laverne C, Vanko D A, et al. 1996. Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from Site 504 (DSDP Legs69, 70 and 83, and ODP Legs 111, 137, 140 and 148). Proc ODP Sci Results, 148: 417–434

    Google Scholar 

  • Anderson R N, Honnorez J, Becker K, et al. 1982. DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust. Nature, 300: 589–594

    Article  Google Scholar 

  • Anderson R N, Alt J C, Malpas J. 1989. Geochemical well logs and the determination of integrated chemical fluxes in Hole 504B, eastern equatorial Pacific. Proc ODP Sci Results, 111: 119–132

    Google Scholar 

  • Andrews A J, Fyfe W S. 1976. Metamorphism and massive sulphide generation in ocean crust. Geosci Can, 3: 84–94.

    Google Scholar 

  • Bischoff J L, Dickson F W. 1975. Seawater-basalt interaction at 200°C and 500 bars: Implications for origin of sea-floor heavy metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett, 25: 385–397

    Article  Google Scholar 

  • Bonatti E. 1975. Metallogenesis at oceanic spreading centers. Ann Rev Earth Plan Sci, 3: 401–431

    Article  Google Scholar 

  • Bowers T S, Campbell A C, Measures C I, et al. 1988. Chemical controls on the composition of vent fluids at 13°N-11°N and 21°N, East Pacific Rise. J Geophys Res, 93: 4522–4536

    Article  Google Scholar 

  • Charlou J L, Bougault H, Appriou P, et al. 1991. Water column anomalies associated with hydrothermal activity between 11°40′ and 13°N on the East Pacific Rise: Discrepancies between tracers. Deep-Sea Res I, 38: 569–596

    Article  Google Scholar 

  • Dill H G, Gauert C, Holler G, et al. 1992. Hydrothermal alteration and mineralization of basalts from the spreading zone of the East Pacific Rise (7°S-23°S). Geol Rundsch, 81: 717–728

    Article  Google Scholar 

  • Edmond J M, Measure C I, McDuff R E, et al. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci Lett, 46: 1–18

    Article  Google Scholar 

  • Edmond J M, Von Damm K L, McDuff R E, et al. 1982. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature, 297: 187–191

    Article  Google Scholar 

  • Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 24: 191–224

    Article  Google Scholar 

  • Emmermann R. 1984. Basement geochemistry, Hole 504B. Int Repts DSDP, 83: 183–201

    Google Scholar 

  • Fouquet Y, Auclair G, Cambon P, et al. 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise. Mar Geol, 84: 145–178

    Article  Google Scholar 

  • Fouquet Y, Knott R, Cambon P, et al. 1996. Formation of large sulfide mineral deposits along fast spreading ridges: Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet Sci Lett, 144: 147–162

    Article  Google Scholar 

  • Gente P, Auzende J M, Renard V, et al. 1986. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N. Earth Planet Sci Lett, 78: 224–236

    Article  Google Scholar 

  • Ghiara M R, Franco E, Petti C, et al. 1993. Hydrothermal interaction between basaltic glass, deionized water and seawater. Chem Geol, 104: 125–138

    Article  Google Scholar 

  • Gillis KM, Thompson G. 1993. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust. Contrib Mineral Petrol, 113: 502–523

    Article  Google Scholar 

  • Hajash A. 1975. Hydrothermal processes along mid-ocean ridges: An experimental investigation. Contrib Mineral Petrol, 53: 205–226

    Article  Google Scholar 

  • Hajash A, Archer P. 1980. Experimental seawater/basalt interactions: Effects of cooling. Contrib Mineral Petrol, 75: 1–13

    Article  Google Scholar 

  • Hajash A, Chandler G W. 1981. An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Contrib Mineral Petrol, 78: 240–254

    Article  Google Scholar 

  • Hart S R, Staudigel H. 1982. The control of alkalies and uranium in sea water by ocean crust alteration. Earth Planet Sci Lett, 58: 202–212

    Article  Google Scholar 

  • Hékinian R, Francheteau J, Renard V, et al. 1983. Intense hydrothermal activity at the axis of the East Pacific Rise near 13°N: Submersible witnesses the growth of a sulfide chimney. Mar Geophys Res, 6: 1–14

    Article  Google Scholar 

  • Hékinian R, Fouquet Y. 1985. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N. Econ Geol, 80: 221–243

    Article  Google Scholar 

  • Hékinian R, Hoffert M, Larque P, et al. 1993. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ Geol, 88: 2099–2121

    Article  Google Scholar 

  • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436

    Article  Google Scholar 

  • Humphris S E, Thompson G. 1978a. Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta, 42: 107–125

    Article  Google Scholar 

  • Humphris S E, Thompson G. 1978b. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Acta, 42: 127–136

    Article  Google Scholar 

  • Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205–208

    Article  Google Scholar 

  • Kelley K A, Plank T, Ludden J, et al. 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosys, 4: 8910

    Google Scholar 

  • Menzies M, Seyfried W E Jr. 1979. Basalt-seawater interaction trace element and strontium isotopic variations in experimentally altered glassy basalt. Earth Planet Sci Lett, 44: 463–472

    Article  Google Scholar 

  • Michard G, Albarede F, Michard A, et al. 1984. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth Planet Sci Lett, 67: 297–307

    Article  Google Scholar 

  • Mottl M J, Holland H D. 1978. Chemical exchange during by hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater. Geochim Cosmochim Acta, 42: 1103–1115

    Article  Google Scholar 

  • Mottl M J, Holland H D, Corr R F. 1979. Chemical exchange during hydrothermal alteration of basalt by seawater—II. Experimental results for Fe, Mn, and sulfur species. Geochim Cosmochim Acta, 43: 869–884

    Article  Google Scholar 

  • Nakamura K, Kato Y, Tamaki K, et al. 2007. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction. Mar Geol, 239: 125–141

    Article  Google Scholar 

  • Palmer M R, Edmond J M. 1989. The strontium budget of the modern ocean. Earth Planet Sci Lett, 92: 11–26

    Article  Google Scholar 

  • Rehkämper M, Hofmann A W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett, 147: 93–106

    Article  Google Scholar 

  • Seyfried W E Jr., Birschoff J L. 1979. Low temperature basalt alteration by seawater: An experimental study at 70°C and 150°C. Geochim Cosmochim Acta, 43: 1937–1947

    Article  Google Scholar 

  • Seyfried W E Jr., Birschoff J L. 1981. Experimental seawater-basalt interaction at 300°C, 500 bars: Chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim Cosmochim Acta, 45: 135–149

    Article  Google Scholar 

  • Seyfried W E Jr., Mottl M J. 1982. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim Cosmochim Acta, 46: 985–1002

    Article  Google Scholar 

  • Seyfried W E Jr., Berndt M E, Seewald J S. 1988. Hydrothermal alteration processes at mid-ocean ridges: Constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Can Mineral, 26: 787–804

    Google Scholar 

  • Spivack A J, Staudigel H. 1994. Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater. Chem Geol, 115: 239–247

    Article  Google Scholar 

  • Staudigel H, Muehlenbachs K, Richardson S H, et al. 1981. Agents of low temperature ocean crust alteration. Contrib Mineral Petrol, 77: 105–157

    Article  Google Scholar 

  • Staudigel H, Hart S R. 1983. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget. Geochim Cosmochim Acta, 47: 337–350

    Article  Google Scholar 

  • Staudigel H, Davies G R, Hart S R, et al. 1995. Large scale Sr, Nd, and Oisotopic anatomy of altered oceanic crust: DSDP sites 417/418. Earth Planet Sci Lett, 130: 169–185

    Article  Google Scholar 

  • Von Damm K L, Edmond J M, Measures C I, et al. 1985a. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta, 49: 2197–2220

    Article  Google Scholar 

  • Von Damm K L, Edmond J M, Measures C I, et al. 1985b. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta, 49: 2221–2237

    Article  Google Scholar 

  • Wetzel L R, Raffensperger J P, Shock E L. 2001. Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models. J Volcanol Geoth Res, 110: 319–342

    Article  Google Scholar 

  • Wolery T J, Sleep N H. 1976. Hydrothermal circulation and geochemical flux at mid-ocean ridges. J Geol, 84: 249–275

    Article  Google Scholar 

  • Zeng Z G, Wang X Y, Zhang G L, et al. 2008. Formation of Feoxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Sci China Ser D-Earth Sci, 51: 206–215

    Article  Google Scholar 

  • Zeng Z G, Chen D G, Yin X B, et al. 2010. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N. Sci China Ser D, 53: 253–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Qi, H., Chen, S. et al. Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the East Pacific Rise near 13°N: An SEM-EDS study. Sci. China Earth Sci. 57, 1427–1437 (2014). https://doi.org/10.1007/s11430-014-4868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4868-6

Keywords

Navigation