Skip to main content
Log in

A review on developments in the electrical structure of craton lithosphere

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Cratons have a long history of evolution. In this paper, applications of the magnetotelluric method used in the study of craton lithosphere over the past 30 years were reviewed, examining case studies of cratons in North America, South America, Asia, Australia, and Africa. The nuclei of the Archean cratons, for example the Kalahari Craton and Rae Craton, are usually characterized by thick and highly resistive lithospheric roots. During or after the formation of the cratons, tectonothermal events, such as collision, mantle plume, and asthenosphere upwelling led to the formation of high-conductivity zones in the craton lithosphere, which could be attributed to the increased hydrogen content (of nominally anhydrous minerals), higher iron content, and formation of graphite films or sulfides along the grain boundary of minerals. These conductive zones are characterized by resistivity discontinuities in craton lithosphere. In particular, the conductive zones include (1) large-scale lithospheric mantle conductors beneath the Slave Craton, Gawler Craton, and central part of North China Craton(Trans-North China Orogen); (2) near-vertical high-conductivity zone associated with the fossil subduction zone beneath the Dharwar Craton and Slave Craton; and (3) regional lateral electrical discontinuities, such as a conductive anomaly under the Bushveld Complex of the Kaapvaal Craton. The eMoho refers to the electrical discontinuity in the crust-mantle boundary. In existing research, this has been detected under the condition of extremely high lithospheric resistivity with only a slight decrease in the lower crust, and in the case of a very thin conductive lower crust or the lack thereof. In the resistivity model, the unique “mushroom-like” lower crust-lithosphere mantle conductor and very thin lower crust layer of the North China Craton may represent lithosphere destruction and/or thinning. We also find that some of the cratons are still not well understood. Therefore, extensive three-dimensional inversion and joint interpretation of geochemical, geophysical, and geologic data are necessary to understand the tectonic evolutionary history of craton lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Azeez K K, Veeraswamy K, Gupta A K, Babu N, Chandrapuri S, Harinarayana T. 2015. The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of South Indian shield: Evidence of collision and modified and preserved lithosphere. J Geophys Res-Solid Earth, 120: 6698–6721

    Google Scholar 

  • Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. J Geophys Res, 106: 16387–16414

    Google Scholar 

  • Bacchin M, Milligan P, Tracey R, Wynne P. 2008. New Gravity Anomaly Map of the Australian Region. 3rd ed. Canberra: Geoscience Australia

    Google Scholar 

  • Banas A, Stachel T, Phillips D, Shimizu N, Viljoen K S, Harris J W. 2009. Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa. Lithos, 112: 736–746

    Google Scholar 

  • Berman R G, Pehrsson S, Davis W J, Ryan J J, Qui H, Ashton K E. 2013. The Arrowsmith orogeny: Geochronological and thermobarometric constraints on its extent and tectonic setting in the Rae craton, with implications for pre-Nuna supercontinent reconstruction. Precambrian Res, 232: 44–69

    Google Scholar 

  • Berman R G, Sanborn-Barrie M, Stern R A, Carson C J. 2005. Tectonometamorphism at ca. 2.35 and 1.85 Ga in the Rae Domain, western Churchill Province, Nunavut, Canada: Insights from structural, metamorphic and in situ geochronological analysis of the southwestern Committee Bay Belt. Canadian Miner, 43: 409–442

    Google Scholar 

  • Betts P G, Giles D, Lister G S, Frick L R. 2002. Evolution of the Australian lithosphere. Aust J Earth Sci, 49: 661–695

    Google Scholar 

  • Bhattacharya B B, Shalivahan B B. 2002. The electric Moho underneath Eastern Indian Craton. Geophys Res Lett, 29: 14–1–14–4

    Google Scholar 

  • Bleeker W. 2003. The late Archean record: A puzzle in ca. 35 pieces. Lithos, 71: 99–134

    Google Scholar 

  • Bologna M S, Dragone G N, Muzio R, Peel E, Nuñez-Demarco P, Ussami N. 2019. Electrical structure of the lithosphere from Rio de la plata Craton to Paraná Basin: Amalgamation of cratonic and refertilized lithospheres in SW Gondwanaland. Tectonics, 38: 77–94

    Google Scholar 

  • Bostock M G. 1998. Mantle stratigraphy and evolution of the Slave province. J Geophys Res, 103: 21183–21200

    Google Scholar 

  • Cagniard L. 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18: 605–635

    Google Scholar 

  • Chardon D, Jayananda M, Chetty T R K, Peucat J J. 2008. Precambrian continental strain and shear zone patterns: South Indian case. J Geophys Res, 113: B08402

    Google Scholar 

  • Chave A D, Jones A G. 2012. The Magnetotelluric Method: Theory and Practice. Cambridge: Cambridge University Press

    Google Scholar 

  • Cook F A, van der Velden A J, Hall K W, Roberts B J. 1999. Frozen subduction in Canada’s northwest territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics, 18: 1–24

    Google Scholar 

  • Davis W, Jones A G, Bleeker W, Grütter H. 2003. Lithosphere development in the Slave craton: A linked crustal and mantle perspective. Lithos, 71: 575–589

    Google Scholar 

  • de Wit M J, de Ronde C E J, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E, Hart R A. 1992. Formation of an Archaean continent. Nature, 357: 553–562

    Google Scholar 

  • Dong H, Wei W, Ye G, Jin S, Jones A G, Jing J, Zhang L, Xie C, Zhang F, Wang H. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification. Geochem Geophys Geosyst, 15: 2414–2425

    Google Scholar 

  • Dong Z, Tang J, Unsworth M, Chen X. 2015. Electrical resistivity structure of the upper mantle beneath Northeastern China: Implications for rheology and the mechanism of craton destruction. J Asian Earth Sci, 100: 115–131

    Google Scholar 

  • Dong Z, Tang J, Chen X, Wang L, Wang J, Meng B, Bai Y. 2016. Deep electric structure beneath northeastern boundary areas of the North China craton (in Chinese). Seismol Geol, 38: 107–120

    Google Scholar 

  • Evans R L, Jones A G, Garcia X, Muller M, Hamilton M, Evans S, Fourie C J S, Spratt J, Webb S, Jelsma H, Hutchins D. 2011. Electrical lithosphere beneath the Kaapvaal craton, southern Africa. J Geophys Res, 116: B04105

    Google Scholar 

  • Evans S, Jones A G, Spratt J, Katsube J. 2005. Central Baffin electromagnetic experiment (CBEX): Mapping the North American Central Plains (NACP) conductivity anomaly in the Canadian arctic. Phys Earth Planet Inter, 150: 107–122

    Google Scholar 

  • Fishwick S, Rawlinson N. 2012. 3-D structure of the Australian lithosphere from evolving seismic datasets. Aust J Earth Sci, 59: 809–826

    Google Scholar 

  • Fouch M J, James D E, Van Decar J C, van L S, Group K S. 2004. Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons. South African J Geol, 107: 33–44

    Google Scholar 

  • Fullea J, Muller M R, Jones A G. 2011. Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res, 116: 6267–6269

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Google Scholar 

  • Gokarn S G, Gupta G, Rao C K. 2004. Geoelectric structure of the Dharwar Craton from magnetotelluric studies: Archean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int, 158: 712–728

    Google Scholar 

  • Han S, Han J, Liu G, Wang H, Liang H. 2016. Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block (in Chinese). Chin J Geophys, 59: 4126–4138

    Google Scholar 

  • Hand M, Reid A, Jagodzinski L. 2007. Tectonic framework and evolution of the Gawler Craton, Southern Australia. Econ Geol, 102: 1377–1395

    Google Scholar 

  • Heinson G S, Direen N G, Gill R M. 2006. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology, 34: 573–576

    Google Scholar 

  • Jiang M, Ai Y, Chen L, Yang Y. 2013. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography. Gondwana Res, 24: 849–864

    Google Scholar 

  • Jiang Z, Sun H, Xu C, Wang J, Shi S. 1990. Preliminary study for electrical structure of crust and upper mantle from Xiangshui, Jiangsu to Mandula of Nemonggol (in Chinese). Seimol Geol, 12: 193–206

    Google Scholar 

  • Jones A G. 1999. Imaging the continental upper mantle using electromagnetic methods. Lithos, 48: 57–80

    Google Scholar 

  • Jones A G. 2013. Imaging and observing the electrical Moho. Tectonophysics, 609: 423–436

    Google Scholar 

  • Jones A G, Evans R L, Muller M R, Hamilton M P, Miensopust M P, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Fourie C J S, Jelsma H, Evans S, Aravanis T, Pettit W, Webb S, Wasborg J. 2009. Area selection for diamonds using magnetotellurics: Examples from southern Africa. Lithos, 112: 83–92

    Google Scholar 

  • Jones A G, Ferguson I J. 2001. The electric Moho. Nature, 409: 331–333

    Google Scholar 

  • Jones A G, Ferguson I J, Chave A D, Evans R L, McNeice G W. 2001. Electric lithosphere of the Slave craton. Geology, 29: 423–426

    Google Scholar 

  • Jones A G, Fishwick S, Evans R L, Muller M R, Fullea J. 2013. Velocity-conductivity relations for cratonic lithosphere and their application: Example of Southern Africa. Geochem Geophys Geosyst, 14: 806–827

    Google Scholar 

  • Jones A, Lezaeta P, Ferguson I J, Chave A D, Evans R L, Garcia X, Spratt J. 2003. The electrical structure of the Slave craton. Lithos, 71: 505–527

    Google Scholar 

  • Jones A G, Snyder D, Hanmer S, Asudeh I, White D, Eaton D, Clarke G. 2002. Magnetotelluric and teleseismic study across the Snowbird Tectonic Zone, Canadian Shield: A Neoarchean mantle suture? Geophys Res Lett, 29: 10–1–10–4

    Google Scholar 

  • Kariya K A, Shankland T J. 1983. Electrical conductivity of dry lower crustal rocks. Geophysics, 48: 52–61

    Google Scholar 

  • Khoza D, Jones A G, Muller M R, Evans R L, Webb S J, Miensopust M. 2013. Tectonic model of the Limpopo belt: Constraints from magnetotelluric data. Precambrian Res, 226: 143–156

    Google Scholar 

  • Krystopowicz N J, Currie C A. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet Sci Lett, 361: 195–207

    Google Scholar 

  • Kumar P, Yuan X, Kumar M R, Kind R, Li X, Chadha R K. 2007. The rapid drift of the Indian tectonic plate. Nature, 449: 894–897

    Google Scholar 

  • Kusham A P, Pradeep N B, Naganjaneyulu K. 2018a. Lithospheric architecture in the Archaean Dharwar craton, India: A magnetotelluric model. J Asian Earth Sci, 163: 43–53

    Google Scholar 

  • Kusham A P, Pradeep N B, Naganjaneyulu K. 2018b. A magnetotelluric study from over Dharwar cratonic nucleus into Billigiri Rangan charnockitic massif, India. Phys Earth Planet Inter, 280: 32–39

    Google Scholar 

  • Kusham A P, Pradeep N B, Naganjaneyulu K. 2019. Crustal and lithospheric mantle conductivity structure in the Dharwar craton, India. J Asian Earth Sci, 176: 253–263

    Google Scholar 

  • Kusky T M. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology, 26: 163–166

    Google Scholar 

  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Google Scholar 

  • Li C, Bai D, Xue S, Li X, Ma X, Yan Y, Kong X. 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block (in Chinese). Chin J Geophys, 60: 1788–1799

    Google Scholar 

  • Liang H, Gao R, Hou H, Li W, Han J, Liu G, Han S. 2015. Post-collisional extend record at crustal scale: Revealed by the deep electrical structure from the southern margin of the central Asian orogenic belt to the northern margin of the North China Craton (in Chinese). Chin J Geol, 50: 643–652

    Google Scholar 

  • Liu L, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353: 1515–1519

    Google Scholar 

  • Lu Z, Xia H, Zhao G, Zhang G, Dong B, Meng B, Li P. 1993. Synthetic geophysics feature of geoscience transection from Dong U Jimqin Qi, Nei Mongol to Donggou, Liaoning.Seismologcical Research of Northeast China (in Chinese). Seismol Res Northeast China, 9: 1–12

    Google Scholar 

  • Maier R, Heinson G, Thiel S, Selway K, Gill R, Scroggs M. 2007. A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia. Appl Earth Sci, 116: 13–21

    Google Scholar 

  • Malleswari D, Veeraswamy K, Abdul Azeez K K, Gupta A K, Babu N, Patro P K, Harinarayana T. 2019. Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar Craton in south India: Evidence for mantle suture and plume-continental interaction. Geosci Front, 10: 1915–1930

    Google Scholar 

  • Mandal P. 2017. Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delamination below the Archean Singhbhum Craton? Tectonophysics, 698: 91–108

    Google Scholar 

  • Miensopust M P, Jones A G, Muller M R, Garcia X, Evans R L. 2011. Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African Magnetotelluric Experiment. J Geophys Res, 116: 1161–1172

    Google Scholar 

  • Mohorovičić A. 1909. Godišnje izvješće zagrebačkog meteorološkog opservatorija za godinu 1909

  • Muller M R, Jones A G, Evans R L, Grütter H S, Hatton C, Garcia X, Hamilton M P, Miensopust M P, Cole P, Ngwisanyi T, Hutchins D, Fourie C J, Jelsma H A, Evans S F, Aravanis T, Pettit W, Webb S J, Wasborg J. 2009. Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: Constraints from broadband magnetotellurics. Lithos, 112: 93–105

    Google Scholar 

  • Naganjaneyulu K, Santosh M. 2012. The nature and thickness of lithosphere beneath the Archean Dharwar Craton, southern India: A magnetotelluric model. J Asian Earth Sci, 49: 349–361

    Google Scholar 

  • Naqvi S M. 2005. Geology and Evolution of the Indian Plate (From Hadean to Holocene 4 Ga to 4 Ka). New Delhi: Capital publishing Company

    Google Scholar 

  • Ouro-Djobo Sedikou B, Wei W, Ye G, Jin S, Jing J, Ji L, Dong H, Zhang L, Yin Y, Xie C. 2018. Experiments of magnetotelluric observation net-work on North China and lithospheric conductivity structure from fast imaging method (in Chinese). Chin J Geophys, 61: 2508–2524

    Google Scholar 

  • Qu J. 1998. The relation between the deep electrical structure of the west and southwest margin of Orods block and the geological structure in this area (in Chinese). Inland Earthq, 12: 312–319

    Google Scholar 

  • Ren Z L, Zhang S, Gao S L, Cui J P, Xiao Y Y, Xiao H. 2007. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in ordos basin. Sci China Ser D-Earth Sci, 50: 27–38

    Google Scholar 

  • Ringwood A E. 1982. Phase transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J Geol, 90: 611–643

    Google Scholar 

  • Rocha N S, Fontes S L, La Terra E F, Fuck R A. 2019. Lithosphere structures of the Parnaíba Basin and adjacent provinces revealed by deep magnetotelluric imaging. J South Am Earth Sci, 92: 1–11

    Google Scholar 

  • Saha A K. 1994. Crustal evolution of Singhbhum-North Orissa Eastern India. Geol Soc India: 341

  • Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res, 178: 149–167

    Google Scholar 

  • Santosh M, Yang Q Y, Shaji E, Tsunogae T, Mohan M R, Satyanarayanan M. 2015. An exotic Mesoarchean microcontinent: The Coorg Block, southern India. Gondwana Res, 27: 165–195

    Google Scholar 

  • Selway K. 2014. On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv Geophys, 35: 219–257

    Google Scholar 

  • Selway K. 2019. Electrical discontinuities in the continental lithosphere imaged with magnetotellurics. In: Yuan H, Romanowicz B, eds. Lithospheric Discontinuities. Hoboken, NJ: John Wiley and Sons. 89–109

    Google Scholar 

  • Selway K M, Hand M, Payne J L, Heinson G S, Reid A. 2011. Magnetotelluric constraints on the tectonic setting of Grenville-aged orogenesis in central Australia. J Geol Soc, 168: 251–264

    Google Scholar 

  • Shalivahan S, Bhattacharya B B, Rao N V C, Maurya V P. 2014. Thin lithosphere-asthenosphere boundary beneath Eastern Indian craton. Tectonophysics, 612–613: 128–133

    Google Scholar 

  • Shalivahan S, Bhattacharya B B. 2005. Electrical anisotropy of asthenosphere in a region of window to mantle underneath Eastern Indian craton. Phys Earth Planet Inter, 152: 43–61

    Google Scholar 

  • Simpson F, Bahr K. 2005. Practical Magnetotellurics. Cambridge: Cambridge University Press

    Google Scholar 

  • Sibson R H. 1994. Crustal stress, faulting and fluid flow. Geol Soc Lond Spec Publ, 78: 69–84

    Google Scholar 

  • Snyder D B, Craven J A, Pilkington M, Hillier M J. 2015. The 3-dimensional construction of the Rae craton, central Canada. Geochem Geophys Geosyst, 16: 3555–3574

    Google Scholar 

  • Snyder D B, Hillier M J, Kjarsgaard B A, de Kemp E A, Craven J A. 2014. Lithospheric architecture of the Slave craton, northwest Canada, as determined from an interdisciplinary 3-D model. Geochem Geophys Geosyst, 15: 1895–1910

    Google Scholar 

  • Spratt J E, Skulski T, Craven J A, Jones A G, Snyder D B, Kiyan D. 2014. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada. J Geophys Res-Solid Earth, 119: 2415–2439

    Google Scholar 

  • Spratt J E, Jones A G, Jackson V A, Collins L, Avdeeva A. 2009. Lithospheric geometry of the Wopmay orogen from a Slave craton to Bear Province magnetotelluric transect. J Geophys Res, 114: 549

    Google Scholar 

  • Spratt J E, Jones A G, Corrigan D, Hogg C. 2013. Lithospheric geometry revealed by deep-probing magnetotelluric surveying, Melville Peninsula, Nunavut. Geological Survey of Canada, doi: https://doi.org/10.4095/292482

  • Stern R A, Bleeker W. 1998. Age of the world’s oldest rocks refined using Canada’s SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada. Geosci Can, 25: 27–31

    Google Scholar 

  • Tang J, Zhan Y, Zhao G, Deng Q, Wang J, Chen X, Zhao J, Xuan F. 2005. Electrical conductivity structure of the crust and upper mantle in the northeastern margin of the Qinghai Tibet plateau along the profile Maqin-Lanzhou-Jingbian (in Chinese). Chin J Geophys, 48: 1205–1216

    Google Scholar 

  • Tang Y C, Chen Y J, Zhou S Y, Ning J Y, Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography. J Geophys Res-Solid Earth, 118: 2333–2346

    Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Su B X. 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth-Sci Rev, 118: 45–68

    Google Scholar 

  • Thiel S. 2008. Modelling and inversion of magnetotelluric data for 2-D and 3-D ithospheric structure, with application to obducted and subducted terranes. Dissertation for Doctoral Degree. Adelaide: University of Adelaide

    Google Scholar 

  • Thiel S, Heinson G. 2010. Crustal imaging of a mobile belt using magnetotellurics: An example of the Fowler Domain in South Australia. J Geophys Res, 115: 3659–3667

    Google Scholar 

  • Thiel S, Heinson G. 2013. Electrical conductors in Archean mantle—Result of plume interaction? Geophys Res Lett, 40: 2947–2952

    Google Scholar 

  • Tikhonov A N. 1950. On determination of electric characteristics of deep layers of the Earth’s crust. Doklady Akademii Nauk SSSR, 151: 295–297

    Google Scholar 

  • Van Reenen D D, Barton J M, Roering C, Smith C A, Van Schalkwyk J F. 1987. Deep crystal response to continental collision: The Limpopo belt of southern Africa. Geology, 15: 11–14

    Google Scholar 

  • Viejo G F, Clowes R M. 2003. Lithospheric structure beneath the Archaean Slave Province and Proterozoic Wopmay orogen, northwestern Canada, from a lithoprobe refraction/wide-angle reflection survey. Geophys J Int, 153: 1–19

    Google Scholar 

  • Wang C Y, Sandvol E, Zhu L, Lou H, Yao Z, Luo X. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth Planet Sci Lett, 387: 198–211

    Google Scholar 

  • Wang D, Mookherjee M, Xu Y, Karato S I. 2006. The effect of water on the electrical conductivity of olivine. Nature, 443: 977–980

    Google Scholar 

  • Wang Q, Bagdassarov N, Ji S. 2013. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 609: 395–422

    Google Scholar 

  • Wang X, Zhan Y, Zhao G, Wang L, Wang J. 2010. Deep electric structure beneath the northern section of the western margin of the Ordos basin (in Chinese). Chin J Geophys, 53: 595–604

    Google Scholar 

  • Wei W, Jin S, Ye G, Deng M, Jing J. 2006. MT sounding and lithosphere thickness in North China (in Chinese). Geol China, 33: 762–772

    Google Scholar 

  • Wei W, Jin S, Ye G, Deng M, Jing J, Li Y, Zhang L, Dong H, Zhang F, Xie C. 2010. On the conductive structure of Chinese continental lithosphere-Experiment on “standard monitoring network” of continental EM parameters (SinoProbe-01) (in Chinese). Acta Geol Sin, 84: 788–800

    Google Scholar 

  • Wei W, Ye G, Jin S, Deng M, Jing J, Peng Z, Lin X, Song S, Tang B, Qu S, Chen K, Yang H, Li G. 2008. Geoelectric structure of lithosphere beneath eastern North China: Features of a thinned lithosphere from magnetotelluric soundings (in Chinese). Earth Sci Front, 33: 762–772

    Google Scholar 

  • Wu F, Gao Y, Gao S, Zheng J. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Google Scholar 

  • Xiao Q B, Zhao G Z, Wang J J, Zhan Y, Chen X B, Tang J, Cai J T, Wan Z S, Wang L F, Ma W, Zhang J H. 2009. Deep electrical structure of the Sulu orogen and neighboring areas. Sci China Ser D-Earth Sci, 52: 420–430

    Google Scholar 

  • Xu L, Wei W, Jin S, Ye G, Liang H, Jia C, Gong X, Yu Y. 2017. Study of deep electrical structure along a profile from northern Ordos block to Yinshan orogenic belt (in Chinese). Chin J Geophys, 60: 575–584

    Google Scholar 

  • Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224: 247–271

    Google Scholar 

  • Yang W. 2014. Exploring lithospheric attribute, phases and mass motion: New mission to the solid earth geophysics (in Chinese). Geol Rev, 60: 1181–1198

    Google Scholar 

  • Yang W, Yu C. 2014. Cratonization processes of continental collision belts: Reveled by worldwide comparison of crust and upper mantle structures (in Chinese). Geol Rev, 60: 721–740

    Google Scholar 

  • Yang X. 2011. Origin of high electrical conductivity in the lower continental crust: A review. Surv Geophys, 32: 875–903

    Google Scholar 

  • Yin Y, Jin S, Wei W, Santosh M, Dong H, Xie C. 2016. Construction and destruction of the North China Craton with implications for metallogeny: Magnetotelluric evidence from the Hengshan-Wutai-Fuping region within Trans-North China Orogen. Gondwana Res, 40: 21–42

    Google Scholar 

  • Yin Y, Jin S, Wei W, Ye G, Jing J, Zhang L, Dong H, Xie C, Liang H. 2017b. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution. Tectonophysics, 717: 1–15

    Google Scholar 

  • Yin Y, Wei W, Jin S, Santosh M. 2017a. Fossil oceanic subduction zone beneath the western margin of the Trans-North China Orogen: Magnetotelluric evidence from the Lüliang Complex. Precambrian Res, 303: 54–74

    Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T. 2009. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett, 288: 291–300

    Google Scholar 

  • Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T. 2008. Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter, 170: 193–200

    Google Scholar 

  • Youssof M, Thybo H, Artemieva I M, Levander A. 2013. Moho depth and crustal composition in Southern Africa. Tectonophysics, 609: 267–287

    Google Scholar 

  • Zhan G, Zhan Y, Wang L, Wang J, Tang J, Chen X, Xiao Q. 2010. Electric structure of the crust beneath the Ordos fault block (in Chinese). Seismol Geol, 32: 345–359

    Google Scholar 

  • Zhang H, Huang Q, Zhao G, Guo Z, Chen Y J. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth Planet Sci Lett, 453: 182–192

    Google Scholar 

  • Zhang P, Deng Q, Zhang G, Ma J, Gan W, Min W, Mao F, Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Sci China Ser D-Earth Sci, 46: 13–24

    Google Scholar 

  • Zhao G, Liu G, Zhan Y, Jiang Z, Liu T, Tang J, Wang J, Li W, Liang J. 1998. The structure of the crust and upper mantle for the Zhangbei-Shangyi seismic area and its neighbouring region (in Chinese). Seismol Geol, 20: 155–163

    Google Scholar 

  • Zhao G, Liu T, Jiang Z, Tang J, Xu C, Zhan Y, Bai D, Liu G. 1997. Investigation on MT data along Yanggao-Rongcheng profile by two-dimensional inversion (in Chinese). Chin J Geophys, 40: 38–46

    Google Scholar 

  • Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Google Scholar 

  • Zhao G, Tang J, Liu T, Zhan Y, Jiang Z. 1996. Preliminary interpretation of MT data along profile from Yanggao to Rongcheng: Application of decomposition of MT impedance tensor (in Chinese). Seismol Geol, 18: 66–74

    Google Scholar 

  • Zhao G, Tang J, Zhan Y, Chen X, Zhuo X, Wang J, Xuan F, Deng Q, Zhao J. 2005. Relation between electricity structure of the crust and de-formation of crustal blocks on the northeastern margin of Qinghai-Tibet Plateau. Sci China Ser D-Earth Sci, 48: 1613–1626

    Google Scholar 

  • Zhao G, Zhan Y, Wang L, Wang J, Tang J, Chen X, Xiao Q. 2010. Electric structure of the crust beneath the Ordos fault block (in Chinese). Seismol Geol, 32: 345–359

    Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the north China craton. Sci China Earth Sci, 55: 1565–1587

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the scientific editor and two reviewers for their valuable comments and suggestions, which improved our manuscript. We thank Kaitlan Winnetka Angel for helping us with the English. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41630317 and 41474055) and the National Key Research and Development Program of China (Grant No. 2017YFC0602405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Lin, W., Yang, W. et al. A review on developments in the electrical structure of craton lithosphere. Sci. China Earth Sci. 63, 1661–1677 (2020). https://doi.org/10.1007/s11430-019-9653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9653-2

Keywords

Navigation