Skip to main content
Log in

Particle finite element method implementation for large deformation analysis using Abaqus

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script, which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM approach allows for the large deformation analysis automatically running with a single Python script and requires no intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. ABAQUS (2016) ABAQUS analysis user’s manual. Version 2016. Dassault Systemes Simulia Corp

  2. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  3. Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the particle finite-element method. J Eng Mech 136(4):455–463

    Article  Google Scholar 

  4. Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput Mech 52(3):607–629

    Article  MATH  Google Scholar 

  5. Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214:502–513

    Article  Google Scholar 

  6. Peng C, Bauinger C, Szewc K, Wu W, Cao H (2019) An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling. J Hydrodyn 31(4):654–668

    Article  Google Scholar 

  7. Peng C, Wang S, Wu W, Yu H-S, Wang C, Chen J-Y (2019) LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotechnica 14(5):1269–1287

    Article  Google Scholar 

  8. Dávalos C, Cante J, Hernández JA, Oliver J (2015) On the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM). Int J Solids Struct 71:99–125

    Article  Google Scholar 

  9. Dong Y (2020) Reseeding of particles in the material point method for soil–structure interactions. Comput Geotech 127:103716

    Article  Google Scholar 

  10. Dong Y, Grabe J (2018) Large scale parallelisation of the material point method with multiple GPUs. Comput Geotech 101:149–158

    Article  Google Scholar 

  11. Dong Y, Wang D, Randolph M (2015) A GPU parallel computing strategy for the material point method. Comput Geotech 66:31–38

    Article  Google Scholar 

  12. Einav I, Randolph MF (2005) Combining upper bound and strain path methods for evaluating penetration resistance. Int J Numer Methods Eng 63(14):1991–2016

    Article  MATH  Google Scholar 

  13. Hibbitt K. ABAQUS/Standard User’s Manual

  14. Hu Y, Randolph MF (1998) H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation. Comput Geotech 23(1–2):61–83

    Article  Google Scholar 

  15. Hu Y, Randolph MF (1998) A practical numerical approach for large deformation problems in soil. Int J Numer Anal Methods Geomech 22(5):327–350

    Article  MATH  Google Scholar 

  16. Kardani M, Nazem M, Carter JP, Abbo AJ (2015) Efficiency of high-order elements in large-deformation problems of geomechanics. Int J Geomech 15(6):04014101

    Article  Google Scholar 

  17. Larese A, Rossi R, Oñate E, Idelsohn SR (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50(6):805–819

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo Y, Huang Y (2020) Effect of open-framework gravel on suffusion in sandy gravel alluvium. Acta Geotech 15(9):2649–2664

    Article  Google Scholar 

  19. Luo Y, Luo B, Xiao M (2020) Effect of deviator stress on the initiation of suffusion. Acta Geotech 15:1607–1617

    Article  Google Scholar 

  20. Meyerhof GG (1951) The ultimate bearing capacity of foudations. Geotechnique 4(4):301–332

    Article  Google Scholar 

  21. Molstad TK (1977) Finite deformation analysis using the finite element method. University of British Columbia, Vancouver

    Google Scholar 

  22. Monforte L, Carbonell JM, Arroyo M, Gens A (2016) Performance of mixed formulations for the particle finite element method in soil mechanics problems. Comput Particle Mech 4:1–16

    Google Scholar 

  23. Monforte L, Arroyo M, Carbonell JM, Gens A (2017) Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM). Comput Geotech 82:144–156

    Article  Google Scholar 

  24. Monforte L, Arroyo M, Carbonell JM, Gens A (2018) Coupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element Method. Comput Geotech 101:114–129

    Article  Google Scholar 

  25. Nazem M, Sheng D, Carter JP (2006) Stress integration and mesh refinement for large deformation in geomechanics. Int J Numer Methods Eng 65(7):1002–1027

    Article  MATH  Google Scholar 

  26. Nazem M, Carter JP, Airey DW (2009) Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems. Comput Geotech 36(4):549–557

    Article  Google Scholar 

  27. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  28. Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800

    Article  MathSciNet  MATH  Google Scholar 

  29. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48(3):307–318

    Article  MathSciNet  MATH  Google Scholar 

  30. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V et al (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11(5):793–812

    Article  Google Scholar 

  31. Prandtl L (1921) Hauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden. ZAMM J Appl Math Mech Z Angew Math Mech 1(1):15–20

    Article  MATH  Google Scholar 

  32. Qiu G, Henke S, Grabe J (2011) Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39

    Article  Google Scholar 

  33. Rodriguez JM, Carbonell JM, Cante JC, Oliver J (2016) The particle finite element method (PFEM) in thermo-mechanical problems. Int J Numer Methods Eng 107(9):733–785

    Article  MathSciNet  MATH  Google Scholar 

  34. Salazar F, Irazábal J, Larese A, Oñate E (2016) Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model. Int J Numer Anal Methods Geomech 40(6):809–826

    Article  Google Scholar 

  35. Shan Z, Zhang W, Wang D, Wang L (2019) Numerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slide, Quebec, Landslides. https://doi.org/10.1007/s10346-020-01567-4

    Article  Google Scholar 

  36. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Berlin

    Google Scholar 

  37. Silva MVD, Krabbenhoft K, Lyamin AV, Sloan SW (2011) Rigid-plastic large-deformation analysis of geotechnical penetration problems. In: Proceedings of 13th IACMAG conference, pp 42–47

  38. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2015) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Gotechnique 66:248–273

    Article  Google Scholar 

  39. Sołowski WT, Sloan SW (2015) Evaluation of material point method for use in geotechnics. Int J Numer Anal Methods Geomech 39(7):685–701

    Article  Google Scholar 

  40. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  MATH  Google Scholar 

  41. Susan Hert, Seel M. dD Convex Hulls and Delaunay Triangulations. CGAL User and Reference Manual. 5.1 ed2020

  42. Tian Y, Cassidy MJ, Randolph MF, Wang D, Gaudin C (2014) A simple implementation of RITSS and its application in large deformation analysis. Comput Geotech 56:160–167

    Article  Google Scholar 

  43. Ullah SN, Hou LF, Satchithananthan U, Chen Z, Gu H (2018) A 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUS. Comput Geotech 99:203–215

    Article  Google Scholar 

  44. Wang S, Wu W (2020) A simple hypoplastic model for overconsolidated clays. Acta Geotech. https://doi.org/10.1007/s11440-020-01000-z

    Article  Google Scholar 

  45. Wang D, Bienen B, Nazem M, Tian Y, Zheng J, Pucker T et al (2015) Large deformation finite element analyses in geotechnical engineering. Comput Geotech 65:104–114

    Article  Google Scholar 

  46. Wang S, Wu W, Zhang D, Kim J R (2020) Extension of a basic hypoplastic model for overconsolidated clays. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103486

    Article  Google Scholar 

  47. Wu Y, Li N, Wang X, Cui J, Chen Y, Wu Y, Yamamoto H (2020) Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105932

    Article  Google Scholar 

  48. Wu Y, Yamamoto H, Cui J, Cheng H (2020) Influence of load mode on particle crushing characteristics of silica sand at high stresses. Int J Geomech 20(3):04019194

    Article  Google Scholar 

  49. Xu C, Kong UOH (2017) Numerical modeling of object penetration in geotechnical engineering. University of Hong Kong Libraries, Pok Fu Lam

    Google Scholar 

  50. Yuan W-H, Zhang W, Dai B-B, Wang Y (2019) Application of the particle finite element method for large deformation consolidation analysis. Eng Comput 36:3138–3163

    Article  Google Scholar 

  51. Yuan W-H, Wang B, Zhang W, Jiang Q, Feng X-T (2019) Development of an explicit smoothed particle finite element method for geotechnical applications. Comput Geotech 106:42–51

    Article  Google Scholar 

  52. Yuan W-H, Liu K, Zhang W, Dai B, Wang Y (2020) Dynamic modeling of large deformation slope failure using smoothed particle finite element method. Landslides 17:1591–1603

    Article  Google Scholar 

  53. Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, da Silva MV et al (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Article  Google Scholar 

  54. Zhang X, Krabbenhoft K, Sheng D (2014) Particle finite element analysis of the granular column collapse problem. Granul r Matter 16(4):609–619

    Article  Google Scholar 

  55. Zhang X, Krabbenhoft K, Sheng D, Li W (2015) Numerical simulation of a flow-like landslide using the particle finite element method. Comput Mech 55(1):167–177

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang X, Sheng D, Sloan SW, Bleyer J (2017) Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity. Int J Numer Methods Eng 112(8):963–989

    Article  MathSciNet  Google Scholar 

  57. Zhang X, Sloan SW, Oñate E (2018) Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity. Int J Numer Anal Methods Geomech 42(15):1806–1822

    Article  Google Scholar 

  58. Zhang W, Yuan W, Dai B (2018) Smoothed particle finite-element method for large-deformation problems in geomechanics. Int J Geomech 18(4):04018010

    Article  Google Scholar 

  59. Zhang X, Oñate E, Torres SAG, Bleyer J, Krabbenhoft K (2019) A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences. Comput Methods Appl Mech Eng 343:314–338

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang X, Wang L, Krabbenhoft K, Tinti S (2019) A case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslide. Landslides 17:1117–1127

    Article  Google Scholar 

  61. Zhang W, Zhong Z, Peng C, Yuan W, Wu W (2021) GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103856

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National key technologies Research & Development program (Grant No. 2017YFC1502603), the Natural Science Foundation of China (NSFC) (Grant No. 41807223, No. 51908175 and No. 52078507),  the Natural Science Foundation of Guangdong Province (No. 2018A030310346), and the Water Conservancy Science and Technology Innovation Project of Guangdong (No. 2020-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, WH., Wang, HC., Zhang, W. et al. Particle finite element method implementation for large deformation analysis using Abaqus. Acta Geotech. 16, 2449–2462 (2021). https://doi.org/10.1007/s11440-020-01124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01124-2

Keywords

Navigation