Skip to main content

Advertisement

Log in

Human skeletal development and feeding behavior: the impact on oxygen isotopes

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

There is substantial room for isotopic analysis to address questions regarding human migration and interaction with the landscape. Oxygen isotopes in vertebrate tissues, which are generally thought to reflect water source, are derived from a combination of water, food and air isotopic values put through the physiology and intermediary metabolism of the animal. We highlight two additional issues in applying oxygen isotopic analysis to humans: the unique developmental regime of skeletal elements and the impact of cooking on food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alqahtani SJ, Hector M, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142(3):481–490

    Article  Google Scholar 

  • Ash MM, Nelson SJ (2003) Wheeler’s dental anatomy, physiology, and occlusion. W.B. Saunders, Philadelphia

    Google Scholar 

  • Attwell L, Kovarovic K, Kendal JR (2015) Fire in the Plio-Pleistocene: the functions of hominin fire use, and the mechanistic, developmental and evolutionary consequences. Journal of Anthropological Sciences 9:31–20

    Google Scholar 

  • Beniash E, Metzler RA, Lam R, Gilbert P (2009) Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166(2):133–143

    Article  Google Scholar 

  • Bentsen SE (2013) Controlling the heat: an experimental approach to Middle Stone Age pyrotechnology. The South African Archaeological Bulletin 137–145

  • Birch W and Dean MC (2009) Rates of enamel formation in human deciduous teeth. (2009) In Koppe T, Meyer G, Alt KW (eds): Comparative Dental Morphology, vol 13. Front Oral Biol. Karger, Basel, pp 116–120

  • Blake RE, O'neil JR, Garcia GA (1997) Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta 61(20):4411–4422

    Article  Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1998) Effects of microbial activity on the δ18O of dissolved inorganic phosphate and textural features of synthetic apatites. Am Mineral 83(11):1516–1531

    Article  Google Scholar 

  • Brettell R, Montgomery J, Evans J (2012) Brewing and stewing: the effect of culturally mediated behavior on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. J Anal At Spectrom 27(5):778–785

    Article  Google Scholar 

  • Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA (2012) The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun Mass Spectrom 26(3):309–319

    Article  Google Scholar 

  • Crowley BE (2014) Oxygen isotope values in bone carbonate and collagen are consistently offset for New World monkeys. Biol Lett 10(11):20140759

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Daux V, Lécuyer C, Héran MA, Amiot R, Simon L, Fourel F, Martineau F, Lynnerup N, Reychler H, Escarguel G (2008) Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol 55(6):1138–1147

    Article  Google Scholar 

  • Deutsch D and Pe'er E (1982) Development of enamel in human fetal teeth. J. of dental research. pp 1543–1551

  • Eriksen EF (2010) Cellular mechanisms of bone remodeling. Reviews in Endocrine and Metabolic Disorders 11(4):219–227

    Article  Google Scholar 

  • France CAM, Owsley DW (2015) Stable carbon and oxygen isotope spacing between bone and tooth collagen and hydroxyapatite in human archaeological remains. Int J Osteoarchaeol 25(3):299–312

    Article  Google Scholar 

  • Greenfield HJ, Arnold ER (2008) Absolute age and tooth eruption and wear sequences in sheep and goat: determining age-at-death in zooarchaeology using a modern control sample. J Archaeol Sci 35(4):836–849

    Article  Google Scholar 

  • Hoppenbrouwers PMM, Borggreven JMPM, Maltha JC (1982) Autoradiographic determination of the metabolic activity of protein in mature dentin. J Dent Res 61(1):49–51

    Article  Google Scholar 

  • Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71(1):194–204

    Article  Google Scholar 

  • Johansson MAE, Jagerstad M (1994) Occurrence of mutagenic/carcinogenic heterocyclic amines in meat and fish products, including pan residues, prepared under domestic conditions. Carcinogenesis 15:1511–1518

    Article  Google Scholar 

  • Kirsanow K, Tuross N (2011) Oxygen and hydrogen isotopes in rodent tissues: impact of diet, water and ontogeny. Palaeogeogr Palaeoclimatol Palaeoecol 310(1):9–16

    Article  Google Scholar 

  • Kirsanow K, Makarewicz C, Tuross N (2008) Stable oxygen (δ18O) and hydrogen (δD) isotopes in ovicaprid dentinal collagen record seasonal variation. J Archaeol Sci 35(12):3159–3167

    Article  Google Scholar 

  • Koch PL, Tuross N, Fogel ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci 24(5):417–429

    Article  Google Scholar 

  • Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48(1):455–488

    Article  Google Scholar 

  • Koon H, Tuross N (2013) The Dutch whalers: a test of a human migration in the oxygen, carbon and nitrogen isotopes of cortical bone collagen. World Archaeol 45(3):360–372

    Article  Google Scholar 

  • Landis WJ, Burke GY, Neuringer JR, Paine MC, Nanci A, Bai P, Warshawsky H (1998) Enamel deposits of the rat incisor examined by electron microscopy electron diffraction, and electron probe microanalysis. Anat Rec 222(3):233–238

    Google Scholar 

  • Levin NE, Cerling TE, Passey BH, Harris JM and Ehleringer JR (2006) A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103(30):11201–11205

  • Liversidge HM (2008) Timing of human mandibular third molar formation.Annals of. Hum Biol 35(3):294–321

    Article  Google Scholar 

  • Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48(2):385–390

    Article  Google Scholar 

  • Luz B, Kolodny Y (1985) Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth Planet Sci Lett 75(1):29–36

    Article  Google Scholar 

  • Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water.Geochimica et. Cosmochimica Acta 48(8):1689–1693

    Article  Google Scholar 

  • Marlowe FW, Berbesque JC (2009) Tubers as fallback foods and their impact on Hadza hunter-gatherers. Am J Phys Anthropol 140(4):751–758

    Article  Google Scholar 

  • Moradian-Oldak J (2012) Protein-mediated enamel mineralization. Frontiers in Bioscience: A Journal and Virtual Library 17:1996–2023

    Article  Google Scholar 

  • Martins SI, Jongen WM, and Van Boekel, MA (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9), pp.364-373

  • Pellegrini M, Lee-Thorp JA, Donahue RE (2011) Exploring the variation of the δ 18 O p and δ 18 O c relationship in enamel increments. Palaeogeogr Palaeoclimatol Palaeoecol 310(1):71–83

    Article  Google Scholar 

  • Pestle WJ, Crowley BE, Weirauch MT (2014) Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS One 9(7):pe102844

    Article  Google Scholar 

  • Quayson ET, Ayernor GS (2007) Non-enzymatic browning and estimated acrylamide in roots, tubers and plantain products. Food Chem 105(4):1525–1529

    Article  Google Scholar 

  • Reid DJ, Dean MC (2006) Variation in modern human enamel formation times. J Hum Evol 50(3):329–346

    Article  Google Scholar 

  • Reynard LM, Meltzer DJ, Emslie SD, Tuross N (2015) Stable isotopes in yellow-bellied marmot (Marmota flaviventris) fossils reveal environmental stability in the late quaternary of the Colorado Rocky Mountains. Quat Res 83(2):345–354

    Article  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ, Weatherell JA (1981) Chemical changes during formation and maturation of human deciduous enamel. Arch Oral Biol 26(12):1027–1033

    Article  Google Scholar 

  • Salamon M, Coppa A, McCormick M, Rubini M, Vargiu R, Tuross N (2008) The consilience of historical and isotopic approaches in reconstructing the medieval Mediterranean diet. J Archaeol Sci 35(6):1667–1672

    Article  Google Scholar 

  • Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JC-C (2010) Regulation of dental enamel shape and hardness. J Dent Res 89(10):1024–1038

    Article  Google Scholar 

  • Sinha R, Rothman N, Salmon CP, Knize MG, Brown ED, Swanson CA, Rhodes D, Rossi S, Felton JS, Levander OA (1998) Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem Toxicol 36(4):279–228

    Article  Google Scholar 

  • Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801

    Article  Google Scholar 

  • Skog K, Steineck G, Augustsson K, Jagerstad M (1995) Effect of cooking temperature on the formation of heterocyclic amines in fried meat products and pan residues. Carcinogenesis 16:861–867

    Article  Google Scholar 

  • Smith CE, Chong DL, Bartlett JD, Margolis HC (2005) Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res 20(2):240–249

    Article  Google Scholar 

  • Speth J (2015) When did humans learn to boil? PaleoAnthropology 2015:54–67

    Google Scholar 

  • Stepańczak B, Szostek K, Pawlyta J (2014) The human bone oxygen isotope ratio changes with aging. Geochronometria 41(2):147–159

    Google Scholar 

  • Sydney-Zax M, Mayer I, Deutsch D (1991) Carbonate content in developing human and bovine enamel. J Dent Res 70(5):913–916

    Article  Google Scholar 

  • Tornberg E (2005) Effects of heat on meat proteins—implications on structure and quality of meat products. Meat Sci 70(3):493–508

    Article  Google Scholar 

  • Truscott R, Schey K, Friedrich M (2016) Old proteins in man: a field in its infancy. Trends Biochem Sci 41(8):654–664

    Article  Google Scholar 

  • Tuross N, Warinner C, Kirsanow K, Kester C (2008) Organic oxygen and hydrogen isotopes in a porcine controlled dietary study. Rapid Commun Mass Spectrom 22(11):1741–1745

    Article  Google Scholar 

  • Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275(50):39027–39031

    Article  Google Scholar 

  • Wang Y, Cerling TE (1994) A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 107(3–4):281–289

    Article  Google Scholar 

  • Warinner C, Tuross N (2009) Alkaline cooking and stable isotope diet-tissue discrimination in swine: archaeological implications. J Archaeol Sci 36(8):1690–1697

    Article  Google Scholar 

  • Weber AW, Link DW, Goriunova OI, Konopatskii AK (1998) Patterns of prehistoric procurement of seal at Lake Baikal: a zooarchaeological contribution to the study of past foraging economies in Siberia. J Archaeol Sci 25(3):215–227

    Article  Google Scholar 

  • Yamamoto K, Ohtani S (1991) Age estimation using the racemization of amino acid in human dentin. Journal of Forensic Science 36(3):792–800

    Google Scholar 

  • Zeder MA (2006) Reconciling rates of long bone fusion and tooth eruption and wear in sheep (Ovis) and goat (Capra). Recent advances in ageing and sexing animal bones pp.87–118

Download references

Acknowledgements

We wish to thank two anonymous reviewers for their helpful and complete comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Tuross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuross, N., Reynard, L., Harvey, E. et al. Human skeletal development and feeding behavior: the impact on oxygen isotopes. Archaeol Anthropol Sci 9, 1453–1459 (2017). https://doi.org/10.1007/s12520-017-0486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0486-5

Keywords

Navigation