Skip to main content

Advertisement

Log in

Development of a culture protocol for Rhodomonas sp. Hf-1 strain through laboratory trials

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Rhodomonas sp. Hf-1 is a marine microalgal strain with a high nutritional value. In order to produce this microalga effectively and inexpensively in a hatchery, its production protocol was reexamined through several culture trials. Firstly, it was found that the Hf-1 strain required nitrogen, phosphorus, iron, manganese and vitamin B12. The optimal nitrogen source was urea. Based on these results, a new medium, MU–SW, was formulated from agricultural fertilizers. Secondly, MU–SW medium was verified at production scale, in which satisfactory growth of the Hf-1 strain was obtained. The cell density reached approximately 3.0 × 106 cells ml−1, and five harvest cycles at 4-day intervals could be achieved. The high unsaturated fatty acid content of the harvested cells fluctuated in the following ranges: C18:2n-6, 19.8–25.2%; C18:3n-6, 8.7–15.2%; C20:4n-6, 2.0–4.6%; C20:5n-3, 8.2–11.3% and C22:6n-3, 5.6–7.3%. This study provides the baseline conditions for introducing the Hf-1 strain into an aquaculture food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blake DM (1994) Bibliography of work on the photocatalytic removal of hazardous compounds from water and air. Technical report. National Renewable Energy Lab, Golden

    Book  Google Scholar 

  • Boelen P, van Mastrigt A, van de Bovenkamp HH, Heeres JH, Buma AG (2017) Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. Aquac Int 25:577–587

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Castille FL, Lawrence AL (1989) Relationship between maturation and biochemical composition of the gonads and digestive glands of the shrimps Penaeus aztecus Ives and Penaeus setiferus (L.). J Crustac Biol 9:202–211

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90

    Article  CAS  PubMed  Google Scholar 

  • Danesi EDG, de O Rangel-Yagui C, de Carvalho JCM, Sato S (2002) An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 23:261–269

    Article  CAS  Google Scholar 

  • Drillet G, Frouël S, Sichlau MH, Japsen PM, Højgaard JK, Joarder AK, Hansen BW (2011) Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315:155–166

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Esra I, Meltem CD, Fazilet VS (2010) Semi-continuous cultivation of Heamatococcus pluvialis for commercial production. Appl Biochem Biotechnol 160:764–772

    Article  CAS  Google Scholar 

  • Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535

    Article  PubMed  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Goldman JC (1977) Biomass production in mass cultures of marine phytoplankton at varying temperatures. J Exp Mar Biol Ecol 27:161–169

    Article  Google Scholar 

  • Guevara M, Arredondo-Vega BO, Palacios Y, Saéz K, Gomez PI (2016) Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. J Appl Phycol 28:2651–2660

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella ana Hustedt, and Detonula confervacea (CLEVE) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hirata H (1980) Mass culture method of marine Chlorella. Yoshoku 17:79–82 (in Japanese)

    Google Scholar 

  • Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acids profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25:129–137

    Article  CAS  Google Scholar 

  • Kanazawa A (1963) Vitamins in algae. Fish Sci 29:713–731 (in Japanese)

    Article  CAS  Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Article  Google Scholar 

  • Khalili A, Najafpour GD, Amini G, Samkhaniyani F (2015) Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris. Biotechnol Bioprocess Eng 20:284–290

    Article  CAS  Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J Appl Phycol 6:559–563

    Google Scholar 

  • Knauer J, Southgate PC (1999) A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Rev Fish Sci 7:241–280

    Article  CAS  Google Scholar 

  • Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67

    Article  CAS  PubMed  Google Scholar 

  • Marty Y, Delaunay F, Moal J, Samain JF (1992) Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J Exp Mar Biol Ecol 163:221–234

    Article  CAS  Google Scholar 

  • Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carvalho JCM (2009) Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem Eng J 43:52–57

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Negoro M, Shioji N, Ikuta Y, Makita T, Uchiumi M (1992) Growth characteristics of microalgae in high-concentration CO2 gas, effects of culture medium trace components, and impurities thereon. Appl Biochem Biotechnol 34:681–692

    Article  Google Scholar 

  • Okauchi M (2014) Microalgae. In: Sugita H (ed) Feedings and water of aquaculture. Koseisya-Koseikaku, Tokyo, pp 56–74 (in Japanese)

    Google Scholar 

  • Okauchi M, Kawamura K (1997) Optimum medium for large-scale culture of Tetraselmis tetrathele. In: Hagiwara A, Snell TW, Lubzens E, Tamaru CS (eds) Live food in aquaculture. Proceedings of the Live Food and Marine Larviculture Symposium, Nagasaki, Japan, 14 September 1996. Springer, Dordrecht, pp 217–222

  • Okauchi M, Yamada T, Ozaki A (2008) Optimum medium for outdoor large-scale and small-scale batch style culture of Nannochloropsis oculate. Aquac Sci 56:147–155 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Otero A, Fábregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Podevin M, De Francisci D, Holdt SL, Angelidaki I (2015) Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J Appl Phycol 27:1415–1423

    Article  CAS  Google Scholar 

  • Ponis E, Parisi G, Le Coz JR, Robert R, Zittelli GC, Tredici MR (2006) Effect of the culture system and culture technique on biochemical characteristics of Pavlova lutheri and its nutritional value for Crassostrea gigas larvae. Aquac Nutr 12:322–329

    Article  CAS  Google Scholar 

  • Ra CH, Sirisuk P, Jung JH, Jeong GT, Kim SK (2017) Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess Biosyst Eng 41:457–465

    Article  CAS  PubMed  Google Scholar 

  • Ramanna L, Guldhe A, Rawat I, Bux F (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168:127–135

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture. II. Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV (1994) Microalgae for use in tropical aquaculture. I. Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. J Appl Phycol 6:337–345

    Article  CAS  Google Scholar 

  • Renaud SM, Zhou HC, Parry DL, Thinh LV, Woo KC (1995) Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO). J Appl Phycol 7:595–602

    Article  CAS  Google Scholar 

  • Romdhane MS, Devresse B, Léger P, Sorgeloos P (1995) Effects of feeding (omega-3) HUFA-enriched Artemia during a progressively increasing period on the larviculture of freshwater prawns. Aquac Int 3:236–242

    Article  Google Scholar 

  • Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Ukeles R (1973) Continuous culture a method for the production of unicellular algal foods. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, New York, pp 233–254

    Google Scholar 

  • van Houcke J, Medina I, Maehre HK, Cornet J, Cardinal M, Linssen J, Luten J (2017) The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement. Food Res Int 100:151–160

    Article  CAS  PubMed  Google Scholar 

  • Volkman JK, Brown MR (2006) Nutritional value of microalgae and applications. Algal cultures, analogues of blooms and applications, vol 1. Science Publishers, Enfield, pp 407–457

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol Part B Comp Biochem 73:3–15

    Article  Google Scholar 

  • Watanabe T, Takeuchi T, Arakawa T, Imaizumi K, Sekiya S, Kitajima C (1989) Requirement of juvenile striped jack Longirostris delicatissimus for n-3 highly unsaturated fatty acids. Nippon Suisan Gakkaishi 55:1111–1117

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2001) Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 75:159–169

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Okauchi M, Yoshimatsu T (2015a) Dietary value of microalga Rhodomonas sp. as a live food for sea cucmber Apostichopus japonicus larvae. Nippon Suisan Gakkaishi 81:973–978 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Yamamoto S, Okauchi M, Yoshimatsu T (2015b) Determination of cell density in microalga Rhodomonas sp. by spectrophotometric method of chlorophyll a. Aquac Sci 63:353–355 (in Japanese with English abstract)

    Google Scholar 

  • Yamamoto S, Fujimura T, Okauchi M, Yoshimatsu T (2016) Dietary value of a microalga Rhodomonas sp. for the broodstock of Japanese pearl oyster Pinctada fucata martensii: a preliminary report. Aquac Sci 64:265–271 (in Japanese with English abstract)

    Google Scholar 

  • Yamamoto S, Yamato R, Yoshimatsu T (2018) Optimum culture conditions of Rhodomonas sp. Hf-1 strain as a live food for aquatic animals. Fish Sci 84:691–697

    Article  CAS  Google Scholar 

  • Yuan C, Xu K, Sun J, Hu G, Li F (2017) Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acid-producing microalgae Mychonastes afer HSO-3-1. J Appl Phycol 30:793–801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Albert Manuel for linguistic assistance, and all members of the laboratory of Shallow Sea Aquaculture at Mie University for their kind assistance and support. We are grateful to the laboratory of the Aquaculture & Artemia Reference Center for their support and suggestions which helped to improve the manuscript. This work was supported by the Japan Public–Private Partnership Student Study Abroad Program (TOBITATE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Yamato, R., Aritaki, Y. et al. Development of a culture protocol for Rhodomonas sp. Hf-1 strain through laboratory trials. Fish Sci 85, 695–703 (2019). https://doi.org/10.1007/s12562-019-01325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-019-01325-z

Keywords

Navigation