Skip to main content
Log in

Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Ediacaran Doushantuo Formation (ca. 635–551 Ma) deposited immediately after the last Neoproterozoic glaciations and recorded the most prominent negative excursions of carbonate carbon isotopic composition (δ13Ccarb). These excursions have been interpreted as a result of widespread remineralization of a large dissolved organic carbon (DOC) reservoir in the Ediacaran deep oceans. However, there is no direct evidence so far found in rocks for the proposed DOC reservoir, which devalues such an interpretation. Here, we conducted a detailed study on the glow-curves characteristics and signal origins of spurious thermoluminescence (TL) of the Doushantuo Formation at Jiulongwan in Yangtze Gorges area, South China, through sequential tests under CO2, N2 and air. Spurious TL intensities for test samples before and after removing soluble organic matter via accelerated solvent extraction (ASE) are nearly identical. Further, significant positive correlation between the spurious TL intensity and total inorganic carbon (TIC) content (R 2=0.7) indicate that the Doushantuo spurious TL with the characteristic peak at 393.5 °C from the sequential test is chemiluminescence (CL) which is derived from the oxidation of a type of non-volatile organic matter strongly associated with carbonate mineral lattice (termed as “X-OM”). A most likely explanation is that the X-OM is a type of dissolved organic matter which co-precipitated with carbonate minerals into sediments in the Ediacaran Doushantuo Ocean. Furthermore, a significant exponential negative correlation (R 2=0.55) is observed between the CL data and the isotopic difference between carbonate and coexisting bulk organic matter (i.e., Δ13Ccarb-org, a proxy for remineralization degree of DOC reservoir in proposed DOC hypothesis), suggesting that the X-OM was derived from the oxidation of the DOC reservoir in the Ediacaran Ocean. We thus propose that the X-OM and its CL detected in our study may have recorded the evolution of the possible DOC reservoir in the Ediacaran Doushantuo Ocean. If this is correct, the stratigraphic variations of the CL intensity in the Doushantuo Formation at Jiulongwan support the pulsed oxidation of the DOC reservoir in the Ediacaran Ocean. Our findings indicate that the CL derived from the oxidation of non-volatile organic matter which is strongly associated with carbonate mineral lattices in rocks may provide a feasible approach for probing the evolution of DOC reservoir in the ancient oceans, thus likely provide direct geological evidence for the development of oceanic DOC reservoir in geological times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Aitken, M. J., Fleming, S. J., Reid, J., et al., 1968. Elimination of Spurious Thermoluminescence. In: McDougall, D. J., ed., Thermoluminescence of Geological Materials. Academic Press, New York. 133–142

    Google Scholar 

  • Baietto, V., Villeneuve, G., Guibert, P., et al., 2000. EPR and TL Correlation in Some Powdered Greek White Marbles. Applied Radiation and Isotopes, 52(2): 229–235

    Article  Google Scholar 

  • Baker, A., Barnes, W. L., Smart, P. L., 1996. Speleothern Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 130(1): 65–76

    Article  Google Scholar 

  • Baker, A., Genty, D., Smart, P. L., 1998. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 26(10): 903

    Article  Google Scholar 

  • Bos, A. J. J., 2006. Theory of Thermoluminescence. Radiation Measurements, 41: S45–S56

    Article  Google Scholar 

  • Bristow, T. F., Kennedy, M. J., 2008. Carbon Isotope Excursions and the Oxidant Budget of the Ediacaran Atmosphere and Ocean. Geology, 36(11): 863

    Article  Google Scholar 

  • Bruce, J., Galloway, R. B., Harper, K., et al., 1999. Bleaching and Phototransfer of Thermoluminescence in Limestone. Radiation Measurements, 30(4): 497–504

    Article  Google Scholar 

  • Chen, G. F., Hu, C. Y., Li, N., et al., 2013. Thermoluminescence in Response to the Mass Extinction Event in Penglaitan Section in Laibin, Guangxi. Science China Earth Sciences, 56(8): 1350–1356

    Article  Google Scholar 

  • Christodoulides, C., Fremlin, J. H., 1971. Thermoluminescence of Biological Materials. Nature, 232: 257–258

    Article  Google Scholar 

  • Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98

    Article  Google Scholar 

  • Debenham, N. C., 1983. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 304: 154–156

    Article  Google Scholar 

  • Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141–162

    Article  Google Scholar 

  • Engin, B., Güven, O., 1997. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 48(9): 1257–1264

    Article  Google Scholar 

  • Fattahi, M., Stokes, S., 2003. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 62(3–4): 229–264

    Article  Google Scholar 

  • Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747

    Article  Google Scholar 

  • Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth’s history. Nature Geoscience, 4(5): 285–292

    Article  Google Scholar 

  • Gruber, D. F., Simjouw, J. P., Seitzinger, S. P., et al., 2006. Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System. Applied and Environmental Microbiology, 72(6): 4184–4191

    Article  Google Scholar 

  • Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1–2): 303–320

    Article  Google Scholar 

  • Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849

    Article  Google Scholar 

  • Jiao, N. Z., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8(8): 593–599

    Article  Google Scholar 

  • Johnston, D. T., Macdonald, F. A., Gill, B. C., et al., 2012. Uncovering the Neoproterozoic Carbon Cycle. Nature, 483(7389): 320–323

    Article  Google Scholar 

  • Kulak, A. N., Iddon, P., Li, Y., et al., 2007. Continuous Structural Evolution of Calcium Carbonate Particles: A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 129(12): 3729–3736

    Article  Google Scholar 

  • Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83

    Article  Google Scholar 

  • Li, H., Xin, H. L., Muller, D. A., et al., 2009. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science, 326(5957): 1244–1247

    Article  Google Scholar 

  • Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1–2): 179–210

    Article  Google Scholar 

  • Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1): 85–109

    Article  Google Scholar 

  • Lian, O. B., Roberts, R. G., 2006. Dating the Quaternary: Progress in Luminescence Dating of Sediments. Quaternary Science Reviews, 25(19–20): 2449–2468

    Article  Google Scholar 

  • Liao, J., Hu, C. Y., Li, C. Z., et al., 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science—Journal of China University of Geosciences, 39(4): 443–450 (in Chinese with English Abstract)

    Google Scholar 

  • Lu, M., Zhu, M. Y., Zhang, J. M., et al., 2013. The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 225: 86–109

    Article  Google Scholar 

  • McFadden, K. A., Huang, J., Chu, X. L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197–3202

    Article  Google Scholar 

  • Ninagawa, K., Takahashi, N., Wada, T., et al., 1988. Thermoluminescence Measurements of a Calcite Shell for Dating. Quaternary Science Reviews, 7(3): 367–371

    Article  Google Scholar 

  • Roque, C., Guibert, P., Vartanian, E., et al., 2001. Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 20(5): 935–938

    Article  Google Scholar 

  • Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124–8129

    Article  Google Scholar 

  • Shopov, Y., Stoykova, D., Tsankov, L., et al., 2000. Verification of the Causes of Glaciations and Sea Level Changes Using the Records of Calcite Speleothems. International Journal of Speleology, 29(1): 3

    Google Scholar 

  • Swanson-Hysell, N. L., Rose, C. V., Calmet, C. C., et al., 2010. Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 328(5978): 608–611

    Article  Google Scholar 

  • Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1): 141–158

    Article  Google Scholar 

  • Wintle, A. G., 1975. Effects of Sample Preparation on the Thermoluminescence Characteristics of Calcite. Modern Geology, 5: 165–167

    Google Scholar 

  • Yuan, X. L., Xiao, S. H., Yin, L. M., et al., 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. China University of Science and Technology Press, Hefei. 1–71 (in Chinese)

    Google Scholar 

  • Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28

    Article  Google Scholar 

  • Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 7–61

    Article  Google Scholar 

  • Zhu, M. Y., Zhang, J. M., Yang, A. H., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, C., Hu, C. et al. Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir. J. Earth Sci. 26, 883–892 (2015). https://doi.org/10.1007/s12583-015-0650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0650-3

Key Words

Navigation