Skip to main content
Log in

Hydrocode simulation of the impact melt layer distribution underneath Xiuyan Crater, China

  • Lunar Exploration and Meteorolite Study
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In this research, we studied the distribution of impact melt layers underneath Xiuyan crater using hydrocode simulation. The target was modeled by granite based on the rock type distribution around the crater and projector by iron, because most small and isolated terrestrial craters are formed by iron projectile. The simulated crater diameter and depth are 1 710 and 320 m, respectively, which are in good agreement with observations of 1 800 and 307 m (except for the post-impact lacustrine sedimentation). The validated model shows that impact melt materials were first formed along the transient crater floor and wall by highshock pressure, and then refilled inward the crater along with collapse of the crater wall. The final style of impact melt materials is interbedded with shock breccia underneath the crater center, which is verified through two layers in the borehole located in the crater center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Amsden, A. A., Ruppel, H. M., Hirt, C. W., 1980. SALE: A Simplified ALE Computer Program for Fluid Flow at All Speeds. Report #LA-8095. Los Alamos National Laboratories, Los Alamos, New Mexico. 101

    Book  Google Scholar 

  • Chen, M., 2008. Impact-Derived Features of the Xiuyan Meteorite Crater. Chinese Science Bulletin, 53(3): 392–395. doi:10.1007/s11434-008-0004-3

    Article  Google Scholar 

  • Chen, M., Xiao, W. S., Xie, X. D., et al., 2010. Xiuyan Crater, China: Impact Origin Confirmed. Chinese Science Bulletin, 55(17): 1777–1781. doi:10.1007/s11434-010-3010-1

    Article  Google Scholar 

  • Chen, M., Koeberl, C., Xiao, W. S., et al., 2011. Planar Deformation Features in Quartz from Impact-Produced Polymict Breccia of the Xiuyan Crater, China. Meteoritics & Planetary Science, 46(5): 729–736. doi:10.1111/j.1945- 5100.2011.01186.x

    Article  Google Scholar 

  • Collins, G. S., Melosh, H. J., Ivanov, B. A., 2004. Modeling Damage and Deformation in Impact Simulations. Meteoritics & Planetary Science, 39(2): 217–231. doi:10.1111/j.1945-5100.2004.tb00337.x

    Article  Google Scholar 

  • Collins, G. S., Melosh, H. J., Marcus, R. A., 2005. Earth Impact Effects Program: A Web-Based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science, 40(6): 817–840. doi:10.1111/j.1945- 5100.2005.tb00157.x

    Article  Google Scholar 

  • Grieve, R. A. F., 1978. The Melt Rocks at Brent Crater, Ontario, Canada. Proceeding of 9th Lunar Planetary Science Conference, March 13–17, Houston. 2579–2608

    Google Scholar 

  • Grieve, R. A. F., Langenhorst, F., Stöffler, D., 1996. Shock Metamorphism of Quartz in Nature and Experiment: II. Significance in Geoscience. Meteoritics & Planetary Science, 31(1): 6–35. doi:10.1111/j.1945-5100.1996.tb02049.x

    Article  Google Scholar 

  • Ivanov, B. A., Deniem, D., Neukum, G., 1997. Implementation of Dynamic Strength Models into 2D Hydrocodes: Applications for Atmospheric Breakup and Impact Cratering. International Journal of Impact Engineering, 20(1–5): 411–430. doi:10.1016/s0734-743x(97)87511-2

    Article  Google Scholar 

  • Ivanov, B. A., Artemieva, N. A., 2011. Numerical Modeling of the Formation of Large Impact Craters. Geological Society of America Special Paper, 356: 619–630

    Google Scholar 

  • Kinslow, R., 1970. High-Velocity Impact Phenomena. Academic Press, New York

    Google Scholar 

  • Littlefield, D. L., 1997. ANEOS Extensions for Modeling Hypervelocity Impact. International Journal of Impact Engineering, 20(6–10): 533–544. doi:10.1016/s0734-743x(97)87442-8

    Article  Google Scholar 

  • Littlefield, D. L., Bauman, P. T., Molineux, A., 2007. Analysis of Formation of the Odessa Crater. International Journal of Impact Engineering, 34(12): 1953–1961. doi:10.1016/j.ijimpeng.2006.12.005

    Article  Google Scholar 

  • McGlaun, J. M., Thompson, S. L., Elrick, M. G., 1990. CTH: A Three-Dimensional Shock Wave Physics Code. International Journal of Impact Engineering, 10(1–4): 351–360. doi:10.1016/0734-743x(90)90071-3

    Article  Google Scholar 

  • Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York

    Google Scholar 

  • Melosh, H. J., 2007. A Hydrocode Equation of State for SiO2. Meteoritics & Planetary Science, 42(12): 2079–2098. doi:10.1111/j.1945-5100.2007.tb01009.x

    Article  Google Scholar 

  • Melosh, H. J., Ryan, E. V., Asphaug, E., 1992. Dynamic Fragmentation in Impacts: Hydrocode Simulation of Laboratory Impacts. Journal of Geophysical Research, 97(E9): 14735. doi:10.1029/92je01632

    Article  Google Scholar 

  • Ohnaka, M., 1995. A Shear Failure Strength Law of Rock in the Brittle-Plastic Transition Regime. Geophysical Research Letters, 22(1): 25–28. doi:10.1029/94gl02791

    Article  Google Scholar 

  • O’Keefe, J. D., Ahrens, T. J., 1994. Impact-Induced Melting of Planetary Surfaces. Geological Society of America Special Paper, 293: 103–109

    Article  Google Scholar 

  • Osinski, G. R., Pierazzo, E., 2013. Impact Cratering: Processes and Products. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Pierazzo, E., Vickery, A. M., Melosh, H. J., 1997. A Reevaluation of Impact Melt Production. Icarus, 127(2): 408–423. doi:10.1006/icar.1997.5713

    Article  Google Scholar 

  • Pierazzo, E., Melosh, H. J., 2000. Melt Production in Oblique Impacts. Icarus, 145(1): 252–261. doi:10.1006/icar.1999.6332

    Article  Google Scholar 

  • Qin, G., Lu, D., Ou, Q., et al., 2001. The Discovery of PGE Anomaly and Platina from Luoquanli Impact Crater, China. Earth Science Frontier, 8(2): 333–338 (in Chinese with English Abstract)

    Google Scholar 

  • Thompson S. L., Lauson, H. S., 1972. Improvements in the Chart D Radiation-Hydrodynamic CODE III: Revised Analytic Equations of State. Report SC-RR-71 0714. Sandia National Laboratory, Albuquerque. 119

    Google Scholar 

  • Tonks, W. B., Melosh, H. J., 1993. Magma Ocean Formation Due to Giant Impacts. Journal of Geophysical Research, 98(E3): 5319. doi:10.1029/92je02726

    Article  Google Scholar 

  • Wang X. Y., Luo, L., Guo H. D., et al., 2013. Cratering Process and Morphological Features of the Xiuyan Impact Crater in Northeast China. Science China: Earth Sciences, 56(10): 1629–1638. doi:10.1007/s11430-013-4695-1

    Article  Google Scholar 

  • Wünnemann, K., Collins, G. S., Melosh, H. J., 2006. A Strain- Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus, 180(2): 514–527. doi:10.1016/j.icarus.2005.10.013

    Article  Google Scholar 

  • Wünnemann, K., Collins, G. S., Osinski, G. R., 2008. Numerical Modelling of Impact Melt Production in Porous Rocks. Earth and Planetary Science Letters, 269(3/4): 530–539. doi:10.1016/j.epsl.2008.03.007

    Article  Google Scholar 

  • Yue, Z. Y., Di, K. C., Zhang, P., 2012. Theories and Methods for Numerical Simulation of Impact Crater Formation. Earth Science Frontiers, 19(6): 110–117 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, C. J., Liu, M. J., Fan, J. C., et al., 2011. High-Resolution Seismic Exploration of Xiuyan Impact Crater Structures. Chinese Journal of Geophysics, 54(6): 1559–1565 (in Chinese with English Abstract)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was finished at Purdue University, and the first author appreciates the help by Prof. Jay Melosh. The authors acknowledge the developers of iSALE2D, including Gareth Collins, Kai Wünnemann, Boris Ivanov, Jay Melosh, and Dirk Elbeshausen. This study was supported by the National Natural Science Foundation of China (Nos. 41472303, 41490635). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0741-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyu Yue.

Additional information

Zongyu Yue: http://orcid-org/0000-0002-8073-9264

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Di, K. Hydrocode simulation of the impact melt layer distribution underneath Xiuyan Crater, China. J. Earth Sci. 28, 180–186 (2017). https://doi.org/10.1007/s12583-017-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0741-9

Keywords

Navigation