Skip to main content
Log in

Morphotectonic Studies of Ghaggar Basin in the Northwestern Frontal Part of the Himalaya Based on Remote Sensing and GIS Techniques

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The sub-Himalayan zone of the Himalaya is bounded by the Main Boundary Thrust (MBT) in the northern side and by the Himalayan Frontal Thrust (HFT) in the southern side. HFT is the youngest major tectonic boundary of the Himalaya, separating the Siwalik Hills from the Indo-Gangetic plains. The HFT and Piedmont fault make the densely populated foothill region vulnerable to seismicity. A morphotectonic study of active faults and frontal anticlines was carried out near the Ghaggar basin along the NW part of the Himalaya. To investigate morphotectonic setup during tectonic deformation, spatial imagery and morphometric parameters extracted from DEM were used along with field investigation. The analysis divulges an important active tectonic setting of the Siwalik foothills, which governs the morphology of the Ghaggar basin and fluvial processes in the area. Variations in the topographic pattern and the interaction of the river drainage system with faults and folds were measured to describe the evolution of tectonic landforms. Drainage pattern development, drainage basin asymmetry young stage of hypsometric curve, active mountain fronts and vigorous down cutting of river indicate active anticline growth. This active fold growth is advanced by the movements along the blind thrust system of the HFT. Morphotectonic evidence such as fracture, fault scarp, river terraces, and active anticlines during field investigation further confirms the recent tectonic activity due to fault-propagated fold growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bali, R., Agarwal, K.K., Ali, S.N., Rastogi, S.K. and Krishna, K., (2012) Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications. Environ. Earth Sci., v.66(4), pp.1163–1174.

    Article  Google Scholar 

  • Bhatt, C.M., Chopra, R., Sharma, P.K. (2007) Morphotectonic analysis in Anandpur Sahib area, Punjab (India) using remote sensing and gis approach. Jour. Indian Soc. Remote Sensing, v.35, pp.129–139. doi: https://doi.org/10.1007/BF02990777

    Article  Google Scholar 

  • Bull, W.B., McFadden, L.D. (1977) Tectonic geomorphology north and south of theGarlock Fault, California, in arid regions: Proc. Eighth Annu. Geomorph. Sym., StateUniv. New York, Binghamton, pp.115–138.

    Google Scholar 

  • Bull, W.B., and McFadden, L.D. (1977) Tectonic geomorphology north and south of the Garlock Fault, California.

  • Bull, W.B. (1977) Tectonic geomorphology of the Mojave Desert. U.S. Geological Survey Contact Report 14-08-001-G-394.

  • Bull, W.B. (1978) Geomorphic tectonic activity classes of the south front of the San Gabriel Mountains, California. Geosciences Department, University of Arizona.

  • Burbank, D.W., Beck, R.A. and Mulder, T. (1996) The Himalayan foreland basin. World and Regional Geology, pp.149–190.

  • Burbank, D., Anderson, R. (2001) Tectonic Geomorphology. Blackwell Science, Oxford.

    Google Scholar 

  • Bhakuni, S.S., Philip, G., Suresh, N. (2016) Structural analysis of Nalagarh lobe, NW Himalaya: implication to thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India. Internat. Jour. Earth Sci. (Geol. Rundsch.) DOI: https://doi.org/10.1007/s00531-016-1385-1.

  • Cox, R.T. (1994) Geological Society of America Bulletin Analysis of drainage-basin symmetry as a rapid technique to identify areas of. Geol. Soc. Amer. Bull., v.106, pp.571–581. doi: https://doi.org/10.1130/0016-7606(1994)106<0571

    Article  Google Scholar 

  • Cox, R.T., Van Arsdale, R.B. and Harris, J.B. (2001) Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage-basin asymmetry. Geol. Soc. Amer. Bull., v.113(5), pp.615–624.

    Article  Google Scholar 

  • Centamore, E., Ciccacci, S., Del Monte, M., Fredi, P. and Palmieri, E.L. (1996) Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy). Geomorphology, v.16(2), pp.127–137.

    Article  Google Scholar 

  • Delcaillau, B., Carozza, J.M., Laville, E. (2006) Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India. Geomorphology, v.76, pp.241–256. doi: https://doi.org/10.1016/j.geomorph.2005.11.005

    Article  Google Scholar 

  • Delcaillau B, Deffontaines B, Floissac L, et al. (1998) Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology, v.24, pp.263–290. doi:https://doi.org/10.1016/S0169-555X(98)00020-8

    Article  Google Scholar 

  • Dewey, J.F. and Bird, J.M., 1970. Mountain belts and the new global tectonics. Jour. Geophys. Res., v.75(14), pp.2625–2647.

    Article  Google Scholar 

  • Elias, Z. (2015) The Neotectonic Activity Along the Lower Khazir River by Using SRTM Image and Geomorphic Indices. Jour. Earth Sci., v.4, pp.50–58. doi: https://doi.org/10.11648/j.earth.20150401.15

    Google Scholar 

  • Figueroa, A.M., Knott, J.R. (2010) Tectonic geomorphology of the southern Sierra Nevada Mountains (California): Evidence for uplift and basin formation. Geomorphology, v.123, pp.34–45. doi: https://doi.org/10.1016/j.geomorph.2010.06.009

    Article  Google Scholar 

  • Goswami, P.K., Pant, C.C. (2008) Tectonic evolution of Duns in Kumaun Sub-Himalaya, India: A remote sensing and GIS-based study. Internat. Jour. Remote Sensing, v.29, pp.4721–4734. doi: https://doi.org/10.1080/01431160802032879

    Article  Google Scholar 

  • Han, Z., Wu, L., Ran, Y. and Ye, Y. (2003) The concealed active tectonics and their characteristics as revealed by drainage density in the North China plain (NCP). Jour. Asian Earth Sci., v.21(9), pp.989–998.

    Article  Google Scholar 

  • Hare, P.W., Gardner, T.W. (1985) Geomorphic indicators of vertical neotectonism alongconverging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology Proc. 15th Annual Binghantom Geomorphology Symp., September 1984. Allen & Unwin: Boston.

  • Horton, R.E. (1945) Erosion development in stream and their drainage basins. Geol. Soc. Amer. Bull., v.56, pp.275–370. doi: https://doi.org/10.1130/0016-7606(1945)56

    Article  Google Scholar 

  • Jackson, J., Van Dissen, R., Berryman, K. (1998) Tilting of active folds and faults in the Manawatu region, New Zealand: evidence from surface drainage patterns, New Zealand. Jour. Geol. Geophys., v.41, pp.377–385.

    Article  Google Scholar 

  • Jain, V.S. (2017) Geomorphic effectiveness of a long profile shape and the role of inherent geological controls in the Himalayan hinterland area of the Ganga River basin, India. Geomorphology, v.304, pp.15–29. doi: https://doi.org/10.1016/j.geomorph.2017.12.022

    Google Scholar 

  • Jordan, G., Meijninger, B.M.L., Hinsbergen, D.J.J. Van (2005) Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. Internat. Jour. Earth Observ. Geoinformation, v.7, pp.163–182. doi: https://doi.org/10.1016/j.jag.2005.03.003

    Article  Google Scholar 

  • Jordan, G. and Schott, B, (2005) Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sens Environ 94: 31–38. doi: https://doi.org/10.1016/j.rse.2004.08.013

    Article  Google Scholar 

  • Kale, V.S., Sengupta, S., Achyuthan, H., Jaiswal, M.K. (2013) Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records Geomorphology, v.227, pp.153–165. doi: https://doi.org/10.1016/j.geomorph.2013.07.027.

    Article  Google Scholar 

  • Karunakaran, C., Ranga Rao, A. (1979) Status of exploration for hydrocarbons in theHimalayan region — contribution to stratigraphy and structure. Geol. Surv. India Misc. Publ., v.41, pp.1–66.

    Google Scholar 

  • Keller, E.A. (1986) Investigation of active tectonics: use of surficial earth processes. In: Washington, D.C. (Ed.), Panel on Active Tectonics. National Academy Press, pp.136–147.

  • Keller, E.A. and Pinter, N. (1996) Active tectonics (Vol.19, pp.359). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Keller, E.A., Pinter, N. (2002) Active tectonics. Earthquakes, uplift, and landscape. Prentice Hall, New Jersey, 338p.

  • Kumaravel, V., Sangode, S.J., Kumar, R., Siva Siddaiah, N. (2005) Magnetic polarity stratigraphy of Plio-Pleistocene Pinjor formation (type locality), Siwalik group, NW Himalaya, India. Curr. Sci., v.88, pp.1453–1461.

    Google Scholar 

  • Knighton, D. (2014) Fluvial forms and processes: a new perspective. Routledge.

  • Kumar, R., Ghosh, S.K., Mazari, R.K. and Sangode, S.J. (2003) Tectonic impact on the fluvial deposits of Plio-Pleistocene Himalayan foreland basin, India. Sediment. Geol., v.158(3–4), pp.209–234.

    Article  Google Scholar 

  • Kumar, R., Dinkar, G.K., Prabhat, P. and Singh, V.K. (2017) Characterisation of drainage basin morphometric parameters of Ghaggar basin in Sirmur District, Himachal Pradesh. Precambrian Continental Growth and Tectonism, p.125.

  • Le Fort, P., 1975. Himalayas: the collided range. Present knowledge of the continental arc. Amer. Jour. Sci., v.275(1), pp.1–44.

    Google Scholar 

  • Lone, A. (2017) Morphometric and Morphotectonic Analysis of Ferozpur Drainage Basin Left Bank Tributary of River Jhelum of Kashmir Valley, NW Himalayas, India. Jour. Geogr Nat Disasters, v.7, doi: https://doi.org/10.4172/2167-0587.1000208

  • Luirei, K., Bhakuni, S.S., Suresh, N., et al (2014) Tectonic geomorphology and morphometry of the frontal part of Kumaun Sub-Himalaya: Appraisal of tectonic activity. Zeitschrift für Geomorphol v.58, pp.435–458. doi: https://doi.org/10.1127/0372-8854/2014/0134.

    Article  Google Scholar 

  • Luirei, K., Bhakuni, S.S. and Kothyari, G.C. (2015) Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya. Geomorphology, v.239, pp.58–72.

    Article  Google Scholar 

  • Malik, J.N., Nakata, T. (2003) Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India. Ann. Geophys., v.46, pp.917–936.

    Google Scholar 

  • Malik, J.N., Nakata, T., Philip, G., et al. (2008) Active fault and paleoseismic investigation: Evidence of a historic earthquake along Chandigarh fault in the frontal Himalayan zone, NW India. Himal Geol., v.29, pp.109–117.

    Google Scholar 

  • Medlicott, H.B. (1864) On the geological Structure and relations of the Himalayan ranges, between the rivers Ganges and Ravee. Mem. Geol. Surv. India, v.3, p.102.

    Google Scholar 

  • Mohanty, C., Baral, D.J., Malik, J.N. (2004a) Use of satellite data for tectonic interpretation, NW Himalaya. Jour. Indian Soc. Remote Sensing, v.32, pp.241–247. doi: https://doi.org/10.1007/BF03030884

    Article  Google Scholar 

  • Mohanty, K.P.T., Singh, J.K.P.S. (2017) Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India/; using remote sensing and GIS technique. Appld. Water Sci., v.7, pp.3767–3782. doi: https://doi.org/10.1007/s13201-016-0524-y

    Article  Google Scholar 

  • Nakata, T. (1989) Active faults of the Himalaya of India and Nepal. In: Tectonics of the Western Himalayas, v.232, pp.243–264.

    Article  Google Scholar 

  • Nakata, T. (1972) Geomorphic history and crustal movements of the Himalayas. Institute of Geography Tohoku University, Sendai, p.77.

    Google Scholar 

  • Philip, G. (1996) Landsat Thematic Mapper data analysis for Quaternary tectonics in parts of the Doon valley, NW Himalaya, India. Internat. Jour. Remote Sensing, v.17, pp.143–153. doi: https://doi.org/10.1080/01431169608948991

    Article  Google Scholar 

  • Philip, G., Virdi, N.S. (2007) Active faults and neotectonic activity in the Pinjaur Dun, northwestern Frontal Himalaya. Curr. Sci., v.92, pp.532–542

    Google Scholar 

  • Philip, G., Bhakuni, S.S., Suresh, N. and Virdi, N.S. (2014) Late Pleistocene faulting along the growing Janauri Anticline and seismic potential in the north-western frontal Himalaya, India. Himalayan Geol., v.35, pp.89–96.

    Google Scholar 

  • Peters, G. and van Balen, R.T. (2007) Tectonic geomorphology of the northern Upper Rhine graben, Germany. Global and Planetary Change, v.58(1–4), pp.310–334.

    Article  Google Scholar 

  • Radaideh, O.M., Grasemann, B., Melichar, R. and Mosar, J. (2016) Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan. Geomorphology, v.275, pp.58–79.

    Article  Google Scholar 

  • Raj, R., Bhandari, S. (2003) Geomorphic indicators of active tectonics in the Karjan river basin, Lower Narmada Valley, western India. Jour. Geol. Soc. India, v.62, pp.739–752

    Google Scholar 

  • Ramasamy, S.M., Kumanan, C.J., Selvakumar, R., Saravanavel, J. (2011) Remote sensing revealed drainage anomalies and related tectonics of South India. Tectonophysics, v.501, pp.41–51. doi: https://doi.org/10.1016/j.tecto.2011.01.011

    Article  Google Scholar 

  • Ramírez-Herrera, M.T. (1998) Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic Belt. Earth Surf Process Landforms, v.23, pp.317–332. doi: https://doi.org/10.1002/(SICI)1096-9837(199804)

    Article  Google Scholar 

  • Rhea, S., 1993. Geomorphic observations of rivers in the Oregon Coast Range from a regionalreconnaissance perspective. Geomorphology, v.6(2), pp.135–150.

    Article  Google Scholar 

  • Singh, A.K., Parkash, B., Choudhury, P.R. (2007) Integrated use of SRM, Landsat ETM+ data and 3D perspective views to identify the tectonic geomorphology of Dehradun valley, India. Internat. Jour. Remote Sensing v.28, pp.2403–2414. doi: https://doi.org/10.1080/01431160600993397

    Article  Google Scholar 

  • Singh, V., Tandon, S.K. (2008a) The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution. Geomorphology, v.102, pp.376–394. doi: https://doi.org/10.1016/j.geomorph.2008.04.008

    Article  Google Scholar 

  • Singh, V. and Tandon, S.K. (2010) Integrated analysis of structures and landforms of an intermontane longitudinal valley (Pinjaur dun) and its associated mountain fronts in the NW Himalaya. Geomorphology, v.114(4), pp.573–589.

    Article  Google Scholar 

  • Spitz, W.J. and Schumm, S.A. (1997) Tectonic geomorphology of the Mississippi Valley between Osceola, Arkansas and Friars Point, Mississippi. Engineering Geol., v.46(3–4), pp.259–280.

    Article  Google Scholar 

  • Srivastava, G.S. and Kulshrestha, A.K. (2005) Neotectonic movements of Markanda and Bata blocks, Himachal Pradesh: inferences from morphometric analysis. Geol. Surv. India, Spec. Publ, no.85, pp.217–224.

  • Strahler, A.N. (1952) Hypsometric (Area-Altitude) analysis of Erosional Topography. Geol. Soc. Amer. Bull., v.63, pp.1117–1142. doi:https://doi.org/10.1130/0016-7606(1952).

    Article  Google Scholar 

  • Suresh, N., Bagati, T.N., Rohtash Kumar and Thakur, V.C. (2007) Evolution of Quaternary alluvial fans and terraces in the intramontane Pinjaur Dun, Sub-Himalaya, NW India: inter-action between tectonics and climate change. Sedimentology, v.54(4), pp.809–833. doi:https://doi.org/10.1111/j.1365-3091.2007.00861.x.

    Article  Google Scholar 

  • Thakur, V.C. (2004) Active tectonics of Himalayan Frontal Thrust and Seismic Hazard to Ganga Plain. Curr. Sci., v.86, pp.1554–1560.

    Google Scholar 

  • Thakur, V.C., Jayangondaperumal, R. and Suresh, N. (2009) Late Quaternary-Holocene fold and landform generated by morohogenic earthquakes in Chandigarh anticlinal ridge in Panjab Sub-Himalaya. Himalayan Geol., v.30, pp.103–113.

    Google Scholar 

  • Thakur, V.C. (2013) Active tectonics of Himalayan frontal fault system. Internat. Jour. Earth Sci., v.102(7), pp.1791–1810.

    Article  Google Scholar 

  • Thomas, J. and Prasannakumar, V., 2015. Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Internat., v.30(3), pp.346–364.

    Article  Google Scholar 

  • Valdiya, K.S., Rana, R.S., Sharma, P.K. and Dey, P. (1992) Active Himalayan frontal fault, main boundary thrust and Ramgarh Thrust in southern Kumaun. Jour. Geol. Soc. India, v.40(6), pp.509–528.

    Google Scholar 

  • Valdiya, K.S. (1988) Tectonics and evolution of the central sector of the Himalaya. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v.326(1589), pp.151–175.

    Google Scholar 

  • Valdiya, K.S. (2002) Emergence and evolution of Himalaya: reconstructing history in the light of recent studies. Progress in Physical Geography: Earth and Environment, v.26(3), doi: https://doi.org/10.1191/0309133302pp342ra. (downloaded)

  • Yeats, R.S., Lillie, R.J. (1991) Contemporary tectonics of the Himalayan frontal fault system. Folds, blind thrusts and the 1905 Kangra earthquake. Jour. Struct. Geol., v.13, pp.227–233. doi: https://doi.org/10.1016/0191-8141(91)90069-U

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Director, HARSAC (Haryana Space Applications Centre) for providing Cartosat-1 digital data. Thanks are due to ISRO (Indian Space Research Organization) for making Bhuvan data available and ESA (European Space Agency) Copernicus for making Sentinel-2 data available. We also acknowledge the Department of Applied Sciences, Punjab Engineering College, Chandigarh for providing facility to carry out research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pooja Pandey or L. N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Sharma, L.N. Morphotectonic Studies of Ghaggar Basin in the Northwestern Frontal Part of the Himalaya Based on Remote Sensing and GIS Techniques. J Geol Soc India 97, 70–78 (2021). https://doi.org/10.1007/s12594-021-1627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1627-0

Navigation