Skip to main content
Log in

Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Seawater intrusion is a major threat to the rapidly depleting groundwater resources in the coastal areas of India. Groundwater-based irrigation, significant industrial development and rapid urbanization are some of the key contributors exacerbating the stress on groundwater resources. Vulnerability to seawater intrusion in the Ramanathapuram district of Eastern India is assessed here utilizing the GALDIT method, for a period of 10 years (2001–2010). Results revealed a drastic increase in percent area coverage under moderate vulnerability, from 19.5 to 53.88 %, between the years 2001 and 2010. On the contrary, areas classified as highly vulnerable underwent minor changes over the span of the study. Vulnerability of the study area was also analyzed for the year 2050 considering an average global mean sea level rise of 3.1 mm/year. Results from the analysis for the year 2050 showed that, almost, the entire study area (~97 %) was classified under moderate vulnerability. As a remedial measure to this imminent threat, favorable zones for artificial recharge were delineated on the basis of overlay analysis with weightage values for important controlling factors. Subsequently, the quantity of artificial recharge required to inhibit the intrusion of seawater, at specified favorable zones were estimated to be 674.87, 599.18 and 1,450.66 m3/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adepelumi AA, Ako BD, Ajayi TR, Afolabi O, Omotoso EJ (2009) Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environ Geol 56(5):927–933

    Article  Google Scholar 

  • Alaguraja P, Durairaju S, Yuvaraj D, Sekar M, Muthuveerran P, Manivel M, Thirunavukkarasu A (2010) Land use and land cover mapping—Madurai District, Tamilnadu, India using remote sensing and GIS techniques. Int J Civ Struct Eng 1(1):91–100

    Google Scholar 

  • Aller L, Bennett T, Lehr JH, Petty RJ (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. U.S. EPA Report 600/2-87/035

  • Andersen F, Mercer JW, White HO Jr (1988) Numerical modeling of salt-water intrusion at Hallandale, Florida. Ground water 26(5):619–630

    Article  Google Scholar 

  • Bear (1972) Dynamics of fluids in porous materials. American Elsevier, New York

    Google Scholar 

  • Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. Reidel Publications, Boston

    Book  Google Scholar 

  • Bear J, Zhou Q (2007) Seawater intrusion into coastal aquifer. In: Delleur WJ (ed) The handbook of groundwater engineering, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Bowen R (1986) Groundwater. Elsevier Applied Science, London

    Google Scholar 

  • Brehme M, Scheytt T, Çelik M, Dokuz U (2011) Hydrochemical characterisation of ground and surface water at Dörtyol/Hatay/Turkey. Environ Earth Sci 63(6):1395–1408. doi:10.1007/s12665-010-0810-1

    Article  Google Scholar 

  • Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model—case study in Goa. Jalvigyan Sameek 20:29–45

    Google Scholar 

  • Chachadi AG, Lobo-Ferreira JP (2001) Seawater intrusion vulnerability mapping of aquifers using GALDIT method. COASTIN: a coastal policy research newsletter, TERI, New Delhi. http://www.teriin.org/teri-wr/coastin/newslett/coastin4.pdf

  • Chen H, Zhang Y, Ren Z, Li L (1997) Salt-water intrusion in the lower reaches of the Weihe River, Shandong Province, China. Hydrogeol J 5(3):82–88

    Article  Google Scholar 

  • Cooper HH Jr, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27:526–534

    Article  Google Scholar 

  • Das SN, Narula KK, Laurin R (1992) Run-off potential indices of watersheds of Tilaiya catchment, Bihar (India) through use of remote sensing and implementation of GIS. J Indian Soc Remote Sens 20(4):207–222

    Article  Google Scholar 

  • Dawod GM, Mirza MN, Al-Ghamdi KA (2011) GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. J Geogr Inf Syst 3:225–231. doi:10.4236/jgis.2011.33019

    Google Scholar 

  • Ebraheem AM, Sensosy MM, Dahab KA (1997) Geoelectrical and hydro-geochemical studies for delineating ground-water contamination due to salt-water intrusion in the northern part of the Nile Delta, Egypt. Ground Water 35(2):216–222

    Article  Google Scholar 

  • Elewa HH, Shohaib RE, Quaddah AA, Nousir AM (2012) Determining groundwater protection zones for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping. Environ Earth Sci. doi:10.1007/s12665-012-1740-x

  • El-Raey M (1997) Vulnerability assessment of the coastal zone of the Nile Delta of Egypt, to the impacts of sea level rise. Ocean Coast Manag 37(1):29–40

    Article  Google Scholar 

  • El-Raey M, Frihy O, Nasr SM, Dewidar KH (1999) Vulnerability assessment of sea level rise over Port Said governorate, Egypt. Environ Monit Assess 56(2):113–128

    Article  Google Scholar 

  • Ghayoumian J, Saravi MM, Feiznia S, Nouri B, Malekian A (2007) Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J Asian Earth Sci 30(2):364–374. doi:10.1016/j.jseaes.2006.11.002

    Article  Google Scholar 

  • Ghyben WB (1888) Nota in verband met de voorgenomen putboring nabij Amsterdam. Inst Ing Tijdschr 21:8–22

    Google Scholar 

  • Hamdan HA, Vafidis, A (2012) Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ Earth Sci. doi:10.1007/s12665-012-1875-9

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herzberg A (1901) Die Wasserversorgung einiger Nordseebäder. J Gasbeleucht Wasserversorg 44:815–819

    Google Scholar 

  • Hiscock KM (2011) Groundwater in 21st century—meeting challenges. In: Jones JAA (ed) Sustaining groundwater resources. Springer, London, pp 207–225

    Chapter  Google Scholar 

  • Huisman B, Olsthroon TN (1983) Artificial groundwater recharge. Pitman Books Ltd, London

    Google Scholar 

  • Ivkovic KM et al (2012) National-scale vulnerability assessment of seawater intrusion: Summary report, Waterlines report, National Water Commission, Canberra, Australia. http://www.nwc.gov.au/__data/assets/pdf_file/0005/21866/FINAL-Coastal-GW-waterlines-290312.pdf

  • Izuka SK, Gingerich SB (1998) Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coast and island aquifers. Hydrogeol J 6:365–373

    Article  Google Scholar 

  • Jovanovic NZ, Adams S, Thomas A, Fey MV, Beekman HE, Campbell R, Saayman I, Conrad J (2006) Improved DRASTIC method for assessment of groundwater vulnerability to generic aqueous phase contaminants. In: Popov V, Kungolos S, Brebbia CA Itoh H (ed) Waste management and the environment III. Wit Press, Southampton, pp 393–402. doi:10.2495/WM060421

  • Kallioras A, Pliakas F, Diamantis I, Emmanouil M (2006a) Application of geographical information systems (GIS) for the management of coastal aquifers to seawater intrusion. J Environ Sci Heal A 41(9):2027–2044. doi:10.1080/10934520600780669

    Article  Google Scholar 

  • Kallioras A, Pliakas F, Diamantis I (2006b) Conceptual model of a coastal aquifer system in northern Greece and assessment of saline vulnerability due to seawater intrusion conditions. Environ Geol 51(3):349–361. doi:10.1007/s00254-006-0331-0

    Article  Google Scholar 

  • Kallioras A, Pliakas F, Skias S, Gkiougkis I (2011) Groundwater vulnerability assessment at SW Rhodope aquifer system in NE Greece. In: Lambrakis N, Stournaras G, Katsanou (eds) Advances in the research of aquatic environment. Environ Earth Sci. Springer 2:351–358. doi:10.1007/978-3-642-24076-8_41

  • Karanth KR (1987) Groundwater assessment development and management. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Kasenow M (2001) Applied ground-water hydrology and well hydraulics. Water Resources Publications, LLC, Highlands Ranch

    Google Scholar 

  • Kim K-Y, Chon C-M, Park K-H (2007) A simple method for locating the fresh water–salt water interface using pressure data. Ground Water 45(6):723–728. doi:10.1111/j.1745-6584.2007.00349.x

    Article  Google Scholar 

  • Latha PS, Rao KN (2012) An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environ Earth Sci 66:2143–2169. doi:10.1007/s12665-011-1438-5

    Article  Google Scholar 

  • Leroux V, Dahlin T (2006) Time-lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposits. Environ Geol 49(3):347–358. doi:10.1007/s00254-005-0070-7

    Article  Google Scholar 

  • Lobo-Ferreira, JP, Chachadi AG, Catarina D, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1. In: IAHS and LNEC proceedings of the fourth interceltic colloquium on hydrology and management of water resources, Portugal

  • Lobo-Ferreira JP, Chachadi AG (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 2. In: IAHS and LNEC proceedings of the fourth interceltic colloquium on hydrology and management of water resources, Portugal

  • Mahesha A, Vyshali, Lathashri UA, Ramesh H (2011) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion: a case study. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0000524

  • Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297:209–228. doi:10.1016/j.jhydrol.2004.04.011

    Article  Google Scholar 

  • Marfai MA, King L (2008) Potential vulnerability implications of coastal inundation due to sea-level rise for the coastal zone of Semarang city, Indonesia. Environ Geol 54:1235–1245. doi:10.1007/s00254-007-0906-4

    Article  Google Scholar 

  • McWhorter DB, Sunada DK (1977) Ground-water hydrology and hydraulics. Water Resources Publications, Fort Collins

    Google Scholar 

  • Murgulet D, Tick G (2008) The extent of saltwater intrusion in southern Baldwin County, Alabama. Environ Geol 55:1235–1245. doi:10.1007/s00254-007-1068-0

    Article  Google Scholar 

  • Nerem RS, Leuliette E, Cazenave A (2006) Present-day sea-level change: a review. Comptes Rendus Geosci 338:1077–1083. doi:10.1016/j.crte.2006.09.001

    Article  Google Scholar 

  • Papadopoulou MP, Karatzas GP, Koukadaki MA, Trichakis Y (2005) Modelling the saltwater intrusion phenomenon in coastal aquifers—a case study in the industrial zone of Heraklio in Crete. Global NEST J 7(2):197–203

    Google Scholar 

  • Pradhan R, Pradhan MP, Ghose MK, Agarwal VS, Agarwal S (2010) Estimation of rainfall runoff using remote sensing and GIS in and around Singtam, East Sikkim. Int J Geomat Geosci 1(3):467–476

    Google Scholar 

  • Ramaswamy SM, Anbazhagan S (1997) Criteria and techniques of detecting site-specific mechanisms for artificial recharge—a case study from Ayyar basin, India. J Geol Soc India 50:449–456

    Google Scholar 

  • Reshma T, Kumar SP, Babu RK, Babu RKMJ, Kumar KS (2010) Simulation of runoff in watersheds using SCS-CN and Muskingum-Cunge methods using remote sensing and Geographical Information Systems. Int J Adv Sci Technol 25:31–42

    Google Scholar 

  • Revelle R (1941) Criteria for recognition of seawater in groundwaters. Trans Am Geophys Union 22:593–597

    Article  Google Scholar 

  • Rupert MG (2001) Calibration of the DRASTIC groundwater vulnerability mapping method. Ground Water 39(4):625–630

    Article  Google Scholar 

  • Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial-recharge sites. Int J Remote Sens 19(10):1825–1841

    Article  Google Scholar 

  • Saraf AK, Choudhury PR, Roy B, Sarma B, Vijay S, Choudhury S (2004) GIS based surface hydrological modelling in identification of groundwater recharge zones. Int J Remote Sens 25(24):5759–5770. doi:10.1080/0143116042000274096

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. doi:10.1029/2006WR005486

    Google Scholar 

  • Sherif MM, Hamza KI (2001) Mitigation of seawater intrusion by pumping brackish water. Transport Porous Media 43(1):29–44. doi:10.1023/A:1010601208708

    Article  Google Scholar 

  • Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chim Acta 550(1–2):82–91. doi:10.1016/j.aca.2005.06.056

    Article  Google Scholar 

  • Steinich B, Escolero O, Marin LE (1998) Salt-water intrusion and nitrate contamination in the valley of Hermosillo and EI Sahuaral coast aquifers, Sonora, Mexico. Hydrogeol J 6:518–526

    Article  Google Scholar 

  • Sundaram LKV, Dinesh V, Ravikumar G (2008) Vulnerability assessment of seawater intrusion and effect of artificial recharge in Pondicherry coastal region using GIS. Indian J Sci Technol 1(7):1–7

    Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, New York

    Google Scholar 

  • Vaux H (2011) Groundwater under stress: the importance of management. Environ Earth Sci 62(1):19–23. doi:10.1007/s12665-010-0490-x

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204

    Article  Google Scholar 

  • Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of seawater intrusion. Ground Water 50:48–58. doi:10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the personnels of the Institute for Water Studies, Public Work Department, Chennai and Central Ground Water Board, Chennai for providing us with the valuable observation data and helpful guidance. We would also like to thank the anonymous reviewers for their constructive comments in order to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajdarul H. Syed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santha Sophiya, M., Syed, T.H. Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India. Environ Earth Sci 70, 1197–1209 (2013). https://doi.org/10.1007/s12665-012-2206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2206-x

Keywords

Navigation