Skip to main content
Log in

Assessment of nitrate and heavy metal contamination of groundwater using the heavy metal pollution index: case study of Linares, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater contamination is a significant problem in Mexico and around the world. It can be influenced by both natural and anthropogenic factors. In Linares, Mexico, we identified several wells used to cover the water demand for different human activities with nearby potential sources of contamination, including urban, agricultural, and livestock activities, electrical and electronic waste disposal, and fuel storage tanks. We then explored groundwater contamination herein as a result of anthropogenic activities as well as the hydrodynamics of the porous and fractured aquifers in the region based on physiochemical analyses of water samples and the heavy metal pollution index (HPI). The fractured aquifer is composed of shales with a thickness of 70–400 m, while the porous aquifer is composed mainly of gravels, sands, silt, and moderately cemented clays with a thickness of 5 m. The groundwater level is on average 20 m deep, and the flow direction is west to east. The identified water facies are mainly Ca–HCO3 type, originating from the dissolution of diverse carbonated materials in the area. It was also possible to identify the mixing of groundwater and water influenced by various agricultural and livestock activities, including the use of pesticides and fertilizers and the direct deposition of cattle excreta. The average nitrate concentration of the sampled wells was 80 mg/L, higher than the permissible limit set by the WHO and Mexican standards. The calculated HPI value was 470, well above the critical value of 100, mostly due to the presence of Cd, which is likely associated with the storage of electrical and electronic waste and fuel tanks in the area. These results show that the water wells sampled in Linares, Mexico, without further treatment, are unsuitable for human use. It is important to continue to monitor the contamination of groundwater by heavy metals in different areas of Mexico and to identify potential sources of contamination to create mitigation strategies and ensure the safety and sustainability of water resources in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abou Zakhem B, Hafez R (2015) Heavy metal pollution index for groundwater quality assessment in Damascus Oasis. Syria. Environ Earth Sci 73(10):6591–6600. https://doi.org/10.1007/s12665-014-3882-5

    Article  Google Scholar 

  • Assubaie FN (2015) Assessment of the levels of some heavy metals in water in Alahsa Oasis farms, Saudi Arabia, with analysis by atomic absorption spectrophotometry. Arab J Chem 8(2):240–245. https://doi.org/10.1016/j.arabjc.2011.08.018

    Article  Google Scholar 

  • Atta R, Abida F, Tangfu X, Sajid M, Aqeel KM et al (2016) Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. J Geochem Explor 169:89–99. https://doi.org/10.1016/j.gexplo.2016.07.013

    Article  Google Scholar 

  • Biswas A, Nath B, Bhattacharya P, Halder D, Kundu AK, Mandal U, Mukherjee A, Chatterjee D, Mörth CM, Jacks G (2012) Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci Total Environ 431:402–412. https://doi.org/10.1016/j.scitotenv.2012.05.031

    Article  Google Scholar 

  • Blanco Hernandez AL, Alonso GD, Jimenez de Blas O, Santiago G, M., De Miguel, M. B., (1998) Estudio de los niveles de plomo, cadmio, zinc y arsénico en aguas de la provincia de Salamanca. Rev Española de Salud Pública 72:53–65

    Article  Google Scholar 

  • Canora F, Rizzo G, Panariello S, Sdao F (2019) Hydrogeology and hydrogeochemistry of the Lauria mountains northern sector groundwater resources (Basilicata, Italy). Geofluids. https://doi.org/10.1155/2019/7039165(Article ID 7039165)

    Article  Google Scholar 

  • Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  Google Scholar 

  • Corral-Bermúdez ML, Rivera-Quintero N, Sánchez- Ortiz E (2014) Percepciones y realidades de la contaminación en la comunidad minera San José de Avino. Durango Tecnol y Ciencias del Agua 5(5):125–140

    Google Scholar 

  • De Zuane J (1993) Handbook of drinking water quality, 2nd edn. Wiley, New York, 575 p

    Google Scholar 

  • Esteller MV, Kondratenko N, Expósito JL, Medina M, Martin del Campo-Delgado MA (2017) Hydrogeochemical characteristics of a volcanic-sedimentary aquifer with special emphasis on Fe and Mn content: a case study in Mexico. J Geochem Explor 180:113–126. https://doi.org/10.1016/j.gexplo.2017.06.002

    Article  Google Scholar 

  • EEC (2015) Standards of the quality of water intended for human consumption (1998L0083-EN-27.10.2015-003.001-1)

  • Fetter CW (2001) Applied hydrogeology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Freeze A, Cherry J (1979) Groundwater pollution. Prentice Hall, New Jersey

    Google Scholar 

  • Galitskaya IV, Mohan KR, Krishna AK, Batrak GI, Eremina ON, Putilina VS, Yuganova TI (2017) Assessment of soil and groundwater contamination by heavy metals and metalloids in Russian and Indian megacities. Procedia Earth Planet Sci 17:674–677. https://doi.org/10.1016/j.proeps.2016.12.180

    Article  Google Scholar 

  • Galván-Mancilla SM (1996) Cartografía Hidrogeológica de la terraza baja entre Hualahuises y Linares, N.L. Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Tesis de Licenciatura, pp 115

  • Goldberg VM (1989) Groundwater pollution by nitrates from livestock wastes. Environ Health Perspect 83:25–29. https://doi.org/10.1289/ehp.898325

    Article  Google Scholar 

  • He B, He J, Wang L, Zhang X, Bi E (2019) Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Res. https://doi.org/10.1016/j.watres.2019.114880

    Article  Google Scholar 

  • Horton RK (1965) An index number system for rating water quality. J Water Pollut Cont Fed 37(3):300–305

    Google Scholar 

  • Huljek L, Perković D, Kovač Z (2019) Nitrate contamination risk of the Zagreb aquifer. J Maps 15(2):570–577. https://doi.org/10.1080/17445647.2019.1642248

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2015) Encuesta intercensal. www.inegi.gob.mx. Accessed 26 Feb 2020

  • Instituto Nacional de Estadística, Geografía e Informàtica (INEGI) (1999) Carta topografica G14C58 (Linares) escala 1:50 000 serie III. N.L

  • Jia X, O’Connor D, Hou D, Jin Y, Li G, Zheng C, Ok Y, Tsang D, Luo J (2019) Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.03.457

    Article  Google Scholar 

  • Koh DCh, Chae GT, Kang BR, Koh GW, Park KH (2009) Baseline geochemical characteristics of groundwater in the mountains of Jeju Island, South Korea: implications for degree of mineralization and nitrate contamination. J Hydrol 376:81–93. https://doi.org/10.1016/j.j.hydrol.2009.07.016

    Article  Google Scholar 

  • Kwaya MY, Hamidu H, Mohammed AI, Abdulmumini YN, Adamu H, Grema HM et al (2019) Heavy metals pollution Indices and Multivariate Statistical Evaluation of Groundwater Quality of Maru town and environs. J Mater Environ Sci 10(1):32–44

    Google Scholar 

  • Lang YC, Liu CQ, Zhao ZQ, Li SL, Han GL (2006) Geochemistry of surface and groundwater in Guiyang city, China: Water rock interaction and pollution in a karst hydrological system. Appl Geochem 21:887–903

    Article  Google Scholar 

  • Ling B (2000) Health impairments arising from drinking water polluted with domestic sewage and excreta in China. Schriftenreihe Des Vereins Für Wasser-, Boden-Und Lufthygiene 105:43–46

    Google Scholar 

  • López Ramos E (1980) Geología de México tomo II: Provincia VI Noreste de México, Instituto de Geología de la UNAM, 2nd edn, pp 380

  • Marshall RE, Levison J, McBean EA, Parker B (2019) Wastewater impacts on groundwater at a fractured sedimentary bedrock site in Ontario, Canada: implications for First Nations’ source-water protection. Hydrogeology J 27:2739–2753. https://doi.org/10.1007/s10040-019-02019-7

    Article  Google Scholar 

  • Mititelu-Ionuș O, Simulescu D, Popescu SM (2019) Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania). Environ Monit Assess 191:501. https://doi.org/10.1007/s10661-019-7648-0

    Article  Google Scholar 

  • Nalawade PM, Bholay AD, Mule MB (2012) Assessment of groundwater and surface water quality indices for heavy metals nearby area of Parli Thermal Power Plant. Univ J Environ Res Technol 2(1):47–51

    Google Scholar 

  • Navarro Galindo A (1959) Reconocimiento Geológico del área Montemorelos, Linares, General Terán, Estado de Nuevo León, Instituto Politécnico Nacional, Facultad de Ingeniería, Tesis de Ingeniería, pp 85

  • NOM-127-SSA1 (1994) Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su pot- abilización. DOF (20 de junio de 2000)

  • Nordberg G, Langard S, Sunderman FW, Mager Stellman J, Osinsky D, Markkanen P (2001) Metales: propiedades quimicas y toxicidad. Enciclopedia de Salud y Seguridad En El Trabajo, pp 1–76

  • Ocampo-Astudillo A, Garrido-Hoyos SE, Salcedo-Sánchez ER, Martínez-Morales M (2020) Alteration of groundwater hydrochemistry due to its intensive xxtraction in urban areas from Mexico. In: Otazo-Sánchez E, Navarro-Frómeta A, Singh V (eds) Water availability and management in Mexico. Water Science and Technology Library, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-24962-5_4

  • Otero V, Campos MF, Pinto JV, Vilarigues M, Carlyle L, Melo MJ (2017) Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings. Heritage Sci 5(1):1–13. https://doi.org/10.1186/s40494-017-0160-3

    Article  Google Scholar 

  • Padilla-Sánchez RJ (1982) Geologic evolution of the Sierra Madre Oriental between Linares, Concepción del Oro, Saltillo and Monterrey, Mexico, University of Texas at Austin, Ph.D. Thesis

  • Pérez Castresana G, Castañeda Roldán E, García Suastegui WA, Morán Perales JL, Cruz Montalvo A, Handal Silva A (2019) Evaluation of health risks due to heavy metals in a rural population exposed to Atoyac River pollution in Puebla, Mexico. Water 11(2):277

    Article  Google Scholar 

  • Pujari PR, Padmakar C, Labhasetwar PK, Mahore P, Ganguly AK (2012) (2012) Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings—a case study from India. Environ Monit Assess 184:251–263. https://doi.org/10.1007/s10661-011-1965-2

    Article  Google Scholar 

  • Purushotham D, Linga D, Sagar N, Mishra S, Naga Vinod G, Venkatesham K, Saikrishna K (2017) Groundwater contamination in parts of Nalgonda district, Telangana, India as revealed by trace elemental studies. J Geol Soc India 90(4):447–458. https://doi.org/10.1007/s12594-017-0738-0

    Article  Google Scholar 

  • Ramakrishnaiah CR, Sadashivaiah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur taluk, Karnataka state. India E J Chem 6(2):523–530. https://doi.org/10.1155/2009/757424

    Article  Google Scholar 

  • Rajmohan N, Patel N, Singh G, Amarasinghe UA (2017) (2017) Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India. Environ Sci Pollut Res 24:21459–21475. https://doi.org/10.1007/s11356-017-9704-z

    Article  Google Scholar 

  • Rangel-Rodríguez MM (1989) Hidrogeología de la Ciudad Universitaria de la Universidad Autónoma de Nuevo León, Linares, México, Technische Hochschule Darmstadt, Diplomarbeit, pp 108

  • Ravindra K, Thind PS, Mor S, Singh T, Mor S (2019) Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113062

    Article  Google Scholar 

  • Rivera-Rodríguez DA, Beltrán-Hernández RI, Lucho-Constantino CA et al (2019) Water quality indices for groundwater impacted by geogenic background and anthropogenic pollution: case study in Hidalgo. Mex Int J Environ Sci Technol 16:2201–2214. https://doi.org/10.1007/s13762-018-1852-2

    Article  Google Scholar 

  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Masood S, Ali S,Fahad S, Nasim W (2016) Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: A case study. Ecol Eng 95:90–100

    Article  Google Scholar 

  • Salcedo Sánchez ER, Garrido Hoyos SE, Esteller MV, Martínez Morales M, Ocampo Astudillo A (2017) Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico). J Geochem Explor 181:219–235. https://doi.org/10.1016/j.gexplo.2017.07.016

    Article  Google Scholar 

  • Sheykhi V, Moore F (2012) Geochemical characterization of Kor River Water Quality, Fars Province, Southwest Iran. Water Qual Exposure Health 4(1):25–38. https://doi.org/10.1007/s12403-012-0063-1

    Article  Google Scholar 

  • Smoroń S (2016) Quality of shallow groundwater and manure effluents in a livestock farm. J Water Land Dev 29(1):59–66. https://doi.org/10.1515/jwld-2016-0012

    Article  Google Scholar 

  • Tiwari AK, Singh PK, Singh AK, De Maio M (2016) Estimation of heavy metal contamination in groundwater and development of a heavy metal pollution index by using GIS technique. Bull Environ Contam Toxicol 96(4):508–515. https://doi.org/10.1007/s00128-016-1750-6

    Article  Google Scholar 

  • U.S. EPA (2018) Edition of the drinking water standards and health advisories tables. EPA 822-F-18-001

  • Venkata Mohan S, Nithila P, Jayarama Reddy S (1996) Estimation of heavy metals in drinking water and development of heavy metal pollution index. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 31(2):283–289. https://doi.org/10.1080/10934529609376357

    Article  Google Scholar 

  • WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO (ISBN 978-92-4-154995-0)

  • Wilburn DR (2008) Material Use in the United States-Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries. US Geol Surv Sci Investig Rep 5141:1–43. https://doi.org/10.1016/j.soncn.2015.08.007

    Article  Google Scholar 

  • Ximenes M, Duffy B, Faria MJ, Neely K (2018) Initial observations of water quality indicators in the unconfined shallow aquifer in Dili City, Timor-Leste: suggestions for its management. Environ Earth Sci 77(19)

  • Zhai Y, Zhao X, Teng Y, Li X, Zhang J, Wu J, Zuo R (2017) Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2016.11.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor de León-Gómez.

Ethics declarations

Availability of data and material

The data used to support the findings of this study are available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de León-Gómez, H., Martin del Campo-Delgado, M.A., Esteller-Alberich, M.V. et al. Assessment of nitrate and heavy metal contamination of groundwater using the heavy metal pollution index: case study of Linares, Mexico. Environ Earth Sci 79, 433 (2020). https://doi.org/10.1007/s12665-020-09164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09164-3

Keywords

Navigation